Mars Exploration News  
MARSDAILY
Widespread megaripple activity on Martian North Pole
by Staff Writers
Tucson AZ (SPX) Jan 13, 2022

Polar bedform sites with active megaripples, as viewed in HiRISE. Approximate transport direction is toward the lower left and the inset is 100 meters wide. HiRISE data are courtesy of NASA/JPL/University of Arizona.

Megaripples, intermediate-scale bedforms caused by the action of the wind, have been studied extensively and thought to be largely inactive relics of past climates, save for a few exceptions. A new paper by Planetary Science Institute Research Scientist Matthew Chojnacki shows that abundant megaripple populations were identified across the north polar region of Mars and were found to be migrating with dunes and ripples.

Megaripples on Mars are about 1 to 2 meters tall and have 5 to 40 meter spacing, where there size falls between ripples that are about 40 centimeters tall with 1 to 5 meter spacing and dunes that can reach hundreds of meters in height with spacing of 100 to 300 meters.

Whereas the megaripples migration rates are slow in comparison (average of 0.13 meters per Earth year), some of the nearby ripples were found to migrate an average equivalent of 9.6 meters per year over just 22 days in northern summer - unprecedented rates for Mars. These high rates of sand movement help explain the megaripple activity.

"Using repeat HiRISE images acquired over long durations - six Mars years or 13 Earth years - we examined the dynamic activity of polar bedforms. We found the thin Martian atmosphere can mobilize some coarse-grained megaripples, overturning prior notions that these were static relic landforms from a past climate. We mapped megaripples and adjacent bedforms across the north polar sand seas, the most expansive collection of dune fields on Mars," said Chojnacki, lead author of "Widespread Megaripple Activity Across the North Polar Ergs of Mars" that appears in Journal of Geophysical Research: Planets.

Part of the uncertainty when studying planetary polar landforms is the long, cold polar winter that eventually covers the region in carbon dioxide and water ice. For wind-driven bedforms, such as megaripples, that means they are unable to migrate for nearly half of the year. "However, it appears the late spring and summer winds that descend off the polar cap more than make up for these other periods of inactivity," Chojnacki said.

"Megaripples were found to be widespread across the region and migrating at relatively high rates relative to other sites on Mars that are at lower latitudes. This enhanced activity is likely related to the greater sand fluxes found for neighboring dunes which are driven by summer-time seasonal winds when polar ice is sublimating.

"This supports the idea that much of the Martian surface is actively being modified and not just ancient or static." Chojnacki said. "In contrast, other megaripples appear to be stabilized, a likely result of inter-granular ice within low wind areas."


Related Links
Planetary Science Institute
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MARSDAILY
An icy spring at the Martian South Pole
Berlin, Germany (SPX) Dec 27, 2021
In addition to its enormous volcanoes, huge rift valley systems, and dried-up crater lakes and river valleys, the ice caps at the north and south poles of Mars have been the subject of intensive scientific investigations. These ice caps, which grow in the winter and shrink in the spring and summer, are also a distinctly aesthetic sight. This image, created using data acquired by the German Aerospace Center (Deutsches Zentrum fur Luft- und Raumfahrt; DLR) High Resolution Stereo Camera (HRSC) on board the ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MARSDAILY
NASA prepares SLS for first crewed Artemis missions

Airbus to develop the Power Management and Distribution System for key Lunar Gateway module

Chang'E-5 Lander Makes First Onsite Detection of Water on Moon

Under a moon spell: Shark attacks related to lunar phases

MARSDAILY
Shouzhou XIII crew finishes cargo spacecraft, space station docking test

China to complete building of space station in 2022

CASC plans more than 40 space launches for China in 2022

China's astronauts mark New Year with livestream from space

MARSDAILY
Asteroid with a refreshed surface

AFRL detects moonlet around asteroid with smallest telescope yet

Asteroid 'Apophis' predicted to skim dangerously close to Earth in 2029

Quadrantid meteor shower offers good show outside of North America

MARSDAILY
Ocean Physics Explain Cyclones on Jupiter

Oxygen ions in Jupiter's innermost radiation belts

Looking Back, Looking Forward To New Horizons

Testing radar to peer into Jupiter's moons

MARSDAILY
San Andreas Fault-like tectonics discovered on Saturn moon Titan

MARSDAILY
How the Earth's tilt creates short, cold January days

Manufacturing revenues for Earth observation to grow to $76.1 billion by 2030

A dirt cheap solution? Common clay materials may help curb methane emissions

UK sets New Year's Day temperature record

MARSDAILY
NASA's newest astronaut class begins training in Houston

Japan space tourist eyes Mariana Trench trip after ISS

CES show highlights: Robo-dogs, self-sailing boat, brain tech

CES tech fair opens under pandemic shadow

MARSDAILY
Cheops reveals a rugby ball-shaped exoplanet

Elusive atmospheric molecule produced in a lab for the 1st time by UH

From dust to planet: how gas giants form

It all comes down to the first electron









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.