Widespread megaripple activity on Martian North Pole by Staff Writers Tucson AZ (SPX) Jan 13, 2022
Megaripples, intermediate-scale bedforms caused by the action of the wind, have been studied extensively and thought to be largely inactive relics of past climates, save for a few exceptions. A new paper by Planetary Science Institute Research Scientist Matthew Chojnacki shows that abundant megaripple populations were identified across the north polar region of Mars and were found to be migrating with dunes and ripples. Megaripples on Mars are about 1 to 2 meters tall and have 5 to 40 meter spacing, where there size falls between ripples that are about 40 centimeters tall with 1 to 5 meter spacing and dunes that can reach hundreds of meters in height with spacing of 100 to 300 meters. Whereas the megaripples migration rates are slow in comparison (average of 0.13 meters per Earth year), some of the nearby ripples were found to migrate an average equivalent of 9.6 meters per year over just 22 days in northern summer - unprecedented rates for Mars. These high rates of sand movement help explain the megaripple activity. "Using repeat HiRISE images acquired over long durations - six Mars years or 13 Earth years - we examined the dynamic activity of polar bedforms. We found the thin Martian atmosphere can mobilize some coarse-grained megaripples, overturning prior notions that these were static relic landforms from a past climate. We mapped megaripples and adjacent bedforms across the north polar sand seas, the most expansive collection of dune fields on Mars," said Chojnacki, lead author of "Widespread Megaripple Activity Across the North Polar Ergs of Mars" that appears in Journal of Geophysical Research: Planets. Part of the uncertainty when studying planetary polar landforms is the long, cold polar winter that eventually covers the region in carbon dioxide and water ice. For wind-driven bedforms, such as megaripples, that means they are unable to migrate for nearly half of the year. "However, it appears the late spring and summer winds that descend off the polar cap more than make up for these other periods of inactivity," Chojnacki said. "Megaripples were found to be widespread across the region and migrating at relatively high rates relative to other sites on Mars that are at lower latitudes. This enhanced activity is likely related to the greater sand fluxes found for neighboring dunes which are driven by summer-time seasonal winds when polar ice is sublimating. "This supports the idea that much of the Martian surface is actively being modified and not just ancient or static." Chojnacki said. "In contrast, other megaripples appear to be stabilized, a likely result of inter-granular ice within low wind areas."
An icy spring at the Martian South Pole Berlin, Germany (SPX) Dec 27, 2021 In addition to its enormous volcanoes, huge rift valley systems, and dried-up crater lakes and river valleys, the ice caps at the north and south poles of Mars have been the subject of intensive scientific investigations. These ice caps, which grow in the winter and shrink in the spring and summer, are also a distinctly aesthetic sight. This image, created using data acquired by the German Aerospace Center (Deutsches Zentrum fur Luft- und Raumfahrt; DLR) High Resolution Stereo Camera (HRSC) on board the ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |