Mars Exploration News  
MARSDAILY
Using dunes to interpret wind on Mars
by Staff Writers
Boulder CO (SPX) Oct 01, 2021

Sand on Mars forms dunes and dune-like features, as seen here in a satellite photo from the Iapygia Quadrangle of Mars. Banding on the back of these dune-like features indicated that they are migrating toward the lower right in the image and the wind is form the upper left.

Dunes develop when wind-blown sand organizes into patterns, most often in deserts and arid or semi-arid parts of the world. Every continent on Earth has dune fields, but dunes and dune-like sand patterns are also found across the solar system: on Mars, Venus, Titan, Comet 67P, and Pluto. On Earth, weather stations measure the wind speed and direction, allowing us to predict and understand airflow in the atmosphere.

On other planets and planetary bodies, we do not yet have weather stations measuring the winds (with a few recent exceptions on Mars only). Without a way to directly measure wind on the surface of another planet, we can use the patterns in dunes to interpret what the wind must be doing, based on our knowledge of dunes on Earth. Furthermore, by studying dunes across planets, we can get a better understanding of how wind and sand behave in general.

In this Geology paper Mackenzie Day of the University of California Los Angeles focuses on what happens when two dunes collide.

"On Earth, we know that dunes collide, combine, link, and merge all the time," says Day. This is what drives changes in dune-field patterns over time. When this happens, the dune-dune interaction leaves behind a particular pattern in the sand, but that pattern is usually covered by actively moving sand and difficult to see without special tools."

On Mars, many dunes look and behave similar to dunes on Earth, but in addition Mars hosts patterns of organized sand that are dune-like but have some differences that have yet to be explained by the scientific community. Whether or not these unusual features, sometimes called "transverse aeolian ridges" or "megaripples," are formed like dunes has been long debated.

"In this work, says Day, I show that these unusual wind-blown sand ridges sometimes show on their surfaces the pattern that forms when two dunes combine."

In the Iapygia region of Mars, transverse aeolian ridges incorporated both light and dark sands, leading to light-dark banding in the upwind side of the ridges. Banding occurring only on one side of the ridges suggests that the banding formed as the ridges migrated.

Furthermore, the dune-interaction pattern known from Earth can be seen in some ridges where the banding is truncated and then reconnects, just like two dunes touching and then combining downwind.

The pattern associated with dune-interactions only forms when two dunes combine, therefore seeing it in these martian sand ridges demonstrates that these enigmatic features (like those shown in the image attached) behave like dunes on Earth. "Just like dunes on Earth, transvers aeolian ridges on Mars migrate, combine, and develop complex patterns in response to the wind."

Transverse aeolian ridges are incredibly common on Mars, and the results of this work allow us to better interpret the wind at the surface of Mars using these dune-like features.

"Overall," Day says, "this work leverages both knowledge of Mars and knowledge of Earth to understand the other planet and opens the door to improving how we interpret wind across planetary bodies further into the solar system."

Research Report: "Aeolian bedform-interaction strata exposed in migrating transverse aeolian ridges on Mars"


Related Links
University of California Los Angeles
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MARSDAILY
NASA Mars mission begins a new chapter of science with a new leader
Greenbelt MD (SPX) Sep 10, 2021
Dr. Shannon Curry, planetary scientist and the deputy assistant director of planetary science at the Space Sciences Laboratory (SSL) at the University of California, Berkeley, has assumed leadership of NASA's first mission devoted to studying the Martian atmosphere. On Aug. 31, Curry started her new job as Principal Investigator of NASA's Mars Atmosphere and Volatile EvolutioN, or MAVEN, mission. She succeeds Dr. Bruce Jakosky, from the Laboratory for Atmospheric and Space Physics (LASP) at the Un ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MARSDAILY
China's Chang'e-4 completes 1,000 days on far side of moon

Airbus backs Dereum Labs to collaborate on lunar resources extraction

Exotic mix in China's Moon Rocks

Peering into the Moon's shadows with AI

MARSDAILY
Building a home in the sky

China opens Shenzhou-12 return capsule at ceremony

China's cargo craft docks with space station core module

China brings astronauts back, advances closer to "space station era"

MARSDAILY
Unique asteroid holds clues to early Solar System

Dust collected from a speeding asteroid analyzed with massive accelerator

Study finds evidence of the origin of metal-rich near-earth asteroids

Rare micrometeorite may have originated from a Ceres-like asteroid

MARSDAILY
SwRI scientists confirm decrease in Pluto's atmospheric density

Hubble shows winds in Jupiter's Great Red Spot are speeding up

Come on in, the water is superionic

Mushballs stash away missing ammonia at Uranus and Neptune

MARSDAILY
Titan-in-a-glass experiments hint at mineral makeup of Saturn moon

Saturn makes waves in its own rings

Dragonfly mission to Titan announces big science goals

Icequakes likely rumble along geyser-spitting fractures in Saturn's icy moon Enceladus

MARSDAILY
First Copernicus satellite exceeds design working life

Earth from Space: Mackenzie River, Canada

NASA software helps weather forecasting around the globe

NASA selects partners for Geostationary and Extended Observations Sounder Phase A Studies

MARSDAILY
Russian actress, director enter space station to film movie

Russian crew blast off to film first movie in space

Russian crew arrives at space station to film first movie in orbit

To boldly go: Star Trek's Shatner spacebound with Blue Origin

MARSDAILY
Planets gone rogue could sustain life

Investigating the potential for life around the galaxy's smallest stars

First planet to orbit 3 Stars discovered

'Planet confusion' could slow Earth-like exoplanet exploration









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.