Mars Exploration News  
MARSDAILY
The seismicity of Mars
by Staff Writers
Zurich, Switzerland (SPX) Feb 25, 2020

.

On 26 November 2018, the NASA InSight lander successfully set down on Mars in the Elysium Planitia region. Seventy Martian days later, the mission's seismometer SEIS began recording the planet's vibrations. A team of researchers and engineers at ETH Zurich, led by ETH Professor Domenico Giardini, had delivered the SEIS control electronics and is responsible for the Marsquake Service. The latter is in charge for the daily interpretation of the data transmitted from Mars, in collaboration with the Swiss Seismological Service at ETH Zurich. Now, the journal Nature Geoscience published a series of articles on the results of the mission in the first months of operation on Mars.

As reported in these articles, InSight recorded 174 events until the end of September 2019. Since then, the measurements have continued leading to more than 450 observed marsquakes as of today, which have not yet been analysed in detail. This accounts for one event a day on average.

The data allows researchers observing how seismic waves travel through the planet and unveiling its internal characteristics - similar to how x-?rays are used in medical tomography. Before InSight landed, researchers had developed a wide range of possible models to represent the internal structure of the red planet. The recorded marsquakes, already after few months, enable refining the understanding of the structure of the planet and to reduce the uncertainties.

Interpreting marsquake data is challenging
Marsquakes are similar to the seismic events we see on Earth, although they are generally of smaller magnitude. The 174 registered marsquakes can be categorized in two families: One includes 24 low-?frequency events with magnitudes between 3 and 4, as documented in the papers, with waves propagating through the Martian mantle. A second family of marsquakes comprises 150 events with smaller magnitudes, shallower hypocentral depth and high frequency waves trapped in the Martian crust.

"Marsquakes have characteristics already observed on the Moon during the Apollo era, with a long signal duration (10 to 20 minutes) due to the scattering properties of the Martian crust", explains ETH Professor Giardini. In general, however, he says, interpreting marsquake data is very challenging and in most cases, it is only possible to identify the distance but not the direction from which the waves are arriving.

InSight landed on a thin, sandy layer
InSight opens a new era for planetary seismology. The SEIS performance exceeded so far expectations, considering the harsh conditions on Mars, characterized by temperatures ranging from minus 80 to 0 degrees Celsius every day and by strong wind oscillations. Indeed wind shakes the InSight lander and its instrumentation during the day leading to a high level of ambient noise.

However, at sunset, the winds calm down allowing recording the quietest seismic data ever collected in the solar system. As a result, most seismic events detected on Mars by SEIS occurred in the quiet night hours. The challenging environment also requires to carefully distinguishing between seismic events and signals originating from movements of the lander, other instruments or atmospheric-?induced perturbances.

The hammering by the HP3 instrument (another InSight experiment) and the close passage of whirlwinds (dust devils), recorded by SEIS, allow to map the physical properties of the shallow soil layers just below the station. We now know that SEIS landed on a thin, sandy layer reaching a few meters deep, in the middle of a 20 meter-?wide ancient impact crater. At greater depths, the Martian crust has properties comparable to Earth's crystalline massifs but appears to be more fractured. The propagation of the seismic waves suggest that the upper mantle has a stronger attenuation compared to the lower mantle.

Seismic activity also induced by tectonic stress
InSight landed in a rather quiet region of Mars, as no events near the station have been recorded up to now. The three biggest events were located in the Cerberus Fossae region about 1'500 km away. It is a tectonic graben system, caused by the weight of the Elysium Mons, the biggest volcano in the Elysium Planitia area. This provides strong evidence that seismic activity on Mars is not only a consequence of the cooling and therewith the shrinking of the planet but also induced by tectonic stress. The total seismic energy released on Mars lies between the one of Earth and of the Moon.

SEIS, complementary to other InSight measurements, also meaningfully contributed data to better understand the meteorological processes on Mars. The instrument's sensitivity to both wind and atmospheric pressure allowed identifying meteorological phenomena characteristic of Mars, including the many dust devils that pass by the spacecraft every afternoon.

Research Report: The seismicity of Mars


Related Links
ETH Zurich
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MARSDAILY
Journey to the center of Mars
Sendai, Japan (SPX) Feb 21, 2020
While InSight's seismometer has been patiently waiting for the next big marsquake to illuminate its interior and define its crust-mantle-core structure, two scientists, Takashi Yoshizaki (Tohoku University) and Bill McDonough (Tohoku University and University of Maryland, College Park) have built a new compositional model for Mars. They used rocks from Mars and measurements from orbiting satellites to predict the depth to its core-mantle boundary, some 1,800 km beneath the surface and have been ab ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MARSDAILY
China's Chang'e-4 probe resumes work for 15th lunar day

NASA selects university teams to build technologies for the Moon's darkest areas

Vice President, Administrator visit NASA Langley for Artemis Update

NASA awards contract to launch Lunar CubeSat

MARSDAILY
China's Yuanwang-5 sails to Pacific Ocean for space monitoring mission

Construction of China's space station begins with start of LM-5B launch campaign

China Prepares to Launch Unknown Satellite Aboard Long March 7A Rocket

China's Long March-5B carrier rocket arrives at launch site

MARSDAILY
First research results on the 'spectacular meteorite fall' of Flensburg

How to deflect an asteroid

OSIRIS-REx Osprey Flyover

Leiden astronomers discover potential near-earth objects

MARSDAILY
TRIDENT Mission Concept Selected by NASA's Discovery Program

Findings from Juno Update Jupiter Water Mystery

One Step Closer to the Edge of the Solar System

A close-up of Arrokoth reveals how planetary building blocks were constructed

MARSDAILY
New SwRI models reveal inner complexity of Saturn moon

Huygens landing spin mystery solved

Final images from Cassini spacecraft

How Enceladus got its stripes

MARSDAILY
Verifying forecasts for major stratospheric sudden warmings

NASA prepares for new science flights above coastal Louisiana

The atmosphere as global sensor

China-France oceanography satellite put into service

MARSDAILY
Mike Pence Says US to Return Astronauts to Space Using American-Built Rockets Before Summer

Russia's Tikhonov May Be Replaced as Chief of Soyuz MS-16 ISS Mission Over Injury - Source

Adidas, Delta Faucet prep research projects for International Space Station

New adventures in beds and baths for spaceflight

MARSDAILY
New technologies, strategies expanding search for extraterrestrial life

Sub-Neptune sized planet validated with the habitable-zone planet finder

Planet on edge of destruction in 18-hour year frenzy

LOFAR pioneers new way to study exoplanet environments









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.