The horst and graben landscape of Ascuris Planum by Staff Writers Berlin, Germany (SPX) May 15, 2020
These images show a landscape deformed by strong tectonic activity in the area north of Labeatis Fossae in the Tempe Terra region of Mars. They were acquired by the High Resolution Stereo Camera (HRSC), operated by the German Aerospace Center (Deutsches Zentrum fur Luft- und Raumfahrt; DLR), on board ESA's Mars Express spacecraft. Here, the results of the enormous forces that once affected the Martian crust as large magma pockets rose from below can be seen. These pockets lifted the crust upwards and triggered volcanic and tectonic activity. HRSC has been mapping the Red Planet since 2004, as part of ESA's Mars Express mission. It was developed and is operated by DLR. The area depicted is located northeast of the large volcanic region of Tharsis, where there are many other similar geological structures. The Tharsis region has a diameter of several thousand kilometres, making it almost as large as Europe. Tharsis is a magmatic bulge, approximately five kilometres tall, and was formed over the course of several billion years. During the gradual upwelling and stressing of the lithosphere by volcanic and plutonic rocks, enormous tensile stresses occurred in the Martian crust, transforming large regions into 'horst and graben' landscapes. Tempe Terra is the northernmost highland region on Mars. The landscape is characterised by numerous tectonic expansion structures, shield volcanoes and solidified lava flows. The fracture structures shown here are in the south-western foothills of the Tempe Fossae troughs, which are over 1000 kilometres long and whose characteristics can be compared to that of the Kenya Rift on Earth, which is a part of the East African Rift.
How do horst and graben structures develop? If the crust continues to expand, large blocks of rock slide down along the fracture surfaces for hundreds of metres, and even up to 1000 or 2000 metres in places. Over many millions of years, tectonic grabens develop. The regions left standing on both sides now tower above the landscape and form the corresponding horsts. The word pair 'horst and graben' have their origins in early medieval miners' German and were incorporated into many languages following geology's establishment as an 'Earth science'.
A change in the stress regime
Varied landscape Erosion processes have also shaped this northern part of the region. The ejected material of a small crater (on the right of Image 1 and the upper right of the perspective view) rises like a platform above the surrounding landscape. These types of crater are formed whenever the ejecta are significantly more resistant to erosion processes than the surface rock. They form an erosion-resistant layer which, after the surrounding material has been removed, creates a plateau around the crater.
Image processing The oblique perspective view was computed using a Digital Terrain Model (DTM) and data from the nadir and colour channels of HRSC. The anaglyph image, which gives a three-dimensional impression of the landscape when viewed with red-blue or red-green glasses, was derived from data acquired by the nadir channel and the stereo channels. The colour-coded image map is based on a DTM of the region, from which the topography of the landscape can be derived. The reference body for the HRSC DTM is an equipotential surface of Mars (areoid). HRSC was developed and is operated by the German Aerospace Center (DLR). The systematic processing of the camera data was performed at the DLR Institute of Planetary Research in Berlin-Adlershof. Personnel at the Department of Planetary Sciences and Remote Sensing at Freie Universitat Berlin used these data to create the image products shown here.
The HRSC experiment on Mars Express
Moreux Crater on Mars offers evidence of dunes and glacial processes Berlin, Germany (SPX) Mar 06, 2020 The images shown here, which were acquired by the High Resolution Stereo Camera (HRSC) on board ESA's Mars Express orbiter, reveal the impressive Moreux Crater on Mars. Glaciers have left their mark on the crater rim and floor, and have significantly altered the terrain. This striking view is complemented by a number of distinctive dark dunes. These formations bear witness to the influence of the prevailing wind systems. HRSC was developed and is operated by the German Aerospace Center (Deutsches ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |