Mars Exploration News  
MARSDAILY
The detective aboard NASA's Perseverance Rover
by Staff Writers
Pasadena CA (JPL) May 27, 2020

(left) An engineering model of SHERLOC, one the instruments onboard NASA's Perseverance Mars rover. Located on the end of the rover's robotic arm, SHERLOC will help determine which samples to take so that they can be sealed in metal tubes and left on the Martian surface for future return to Earth. (right) In this test image by SHERLOC (Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals), an instrument aboard NASA's Perseverance rover, each color represents a different mineral detected on a rock's surface.

Mars is a long way from 221B Baker Street, but one of fiction's best-known detectives will be represented on the Red Planet after NASA's Perseverance rover touches down on Feb. 18, 2021. SHERLOC, an instrument on the end of the rover's robotic arm, will hunt for sand-grain-sized clues in Martian rocks while working in tandem with WATSON, a camera that will take close-up pictures of rock textures. Together, they will study rock surfaces, mapping out the presence of certain minerals and organic molecules, which are the carbon-based building blocks of life on Earth.

SHERLOC was built at NASA's Jet Propulsion Laboratory in Southern California, which leads the Perseverance mission; WATSON was built at Malin Space Science Systems in San Diego. For the most promising rocks, the Perseverance team will command the rover to take half-inch-wide core samples, store and seal them in metal tubes, and deposit them on the surface of Mars so that a future mission can return them to Earth for more detailed study.

SHERLOC will be working with six other instruments aboard Perseverance to give us a clearer understanding of Mars. It's even helping the effort to create spacesuits that will hold up in the Martian environment when humans set foot on the Red Planet. Here's a closer look.

The Power of Raman
SHERLOC's full name is a mouthful: Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals. "Raman" refers to Raman spectroscopy, a scientific technique named after the Indian physicist C.V. Raman, who discovered the light-scattering effect in the 1920s.

"While traveling by ship, he was trying to discover why the color of the sea was blue," said Luther Beegle of JPL, SHERLOC's principal investigator. "He realized if you shine a light beam on a surface, it can change the wavelength of scattered light depending on the materials in that surface. "

This effect is called Raman scattering. Scientists can identify different molecules based on the distinctive spectral "fingerprint" visible in their emitted light. An ultraviolet laser that is part of SHERLOC will allow the team to classify organics and minerals present in a rock and understand the environment in which the rock formed.

Salty water, for example, can result in the formation of different minerals than fresh water. The team will also be looking for astrobiology clues in the form of organic molecules, which among other things, serve as potential biosignatures, demonstrating the presence life in Mars' ancient past.

"Life is clumpy," Beegle said. "If we see organics clumping together on one part of a rock, it might be a sign that microbes thrived there in the past."

Nonbiological processes can also form organics, so detecting the compounds isn't a sure sign that life formed on Mars. But organics are crucial to understanding whether the ancient environment could have supported life.

A Martian Magnifying Glass
When Beegle and his team spot an interesting rock, they'll scan a quarter-sized area of it with SHERLOC's laser to tease out the mineral composition and whether organic compounds are present. Then WATSON (Wide Angle Topographic Sensor for Operations and eNgineering) will take close-up images of the sample. It can snap images of Perseverance, too, just as NASA's Curiosity rover uses the same camera - called the Mars Hand Lens Imager on that vehicle - for science and for taking selfies.

But combined with SHERLOC, WATSON can do even more: The team can precisely map SHERLOC's findings over WATSON's images to help reveal how different mineral layers formed and overlap. They can also combine the mineral maps with data from other instruments - among them, PIXL (Planetary Instrument for X-ray Lithochemistry) on Perseverance's robotic arm - to see whether a rock could hold signs of fossilized microbial life.

Meteorites and Spacesuits
Any science instrument exposed to the Martian environment for long enough is bound to change, either from the extreme temperature swings or the radiation from the Sun and cosmic rays. Scientists occasionally have to calibrate these instruments, which they do by measuring their readings against calibration targets - essentially, objects with known properties selected in advance for cross-checking purposes. (For instance, a penny serves as one calibration target aboard Curiosity.) Since they know in advance what the readings should be when an instrument is working correctly, scientists can make adjustments accordingly.

About the size of a smartphone, SHERLOC's calibration target includes 10 objects, including a sample of a Martian meteorite that traveled to Earth and was found in the Oman desert in 1999. Studying how this meteorite fragment changes over the course of the mission will help scientists understand the chemical interactions between the planet's surface and its atmosphere. SuperCam, another instrument aboard Perseverance, has a piece of Martian meteorite on its calibration target as well.

While scientists are returning fragments of Mars back to the surface of the Red Planet to further their studies, they're counting on Perserverance to gather dozens of rock and soil samples for future return to Earth. The samples the rover collects will be exhaustively studied, with data taken from the landscape in which they formed, and they'll include different rock types than the meteorites.

Next to the Martian meteorite are five samples of spacesuit fabric and helmet material developed by NASA's Johnson Space Center. SHERLOC will take readings of these materials as they change in the Martian landscape over time, giving spacesuit designers a better idea of how they degrade. When the first astronauts step on to Mars, they might have SHERLOC to thank for the suits that keep them safe.


Related Links
Perseverance mars Rover
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MARSDAILY
Air deliveries bring NASA's Perseverance Mars rover closer to launch
Kennedy Space Center FL (SPX) May 22, 2020
Progress continues to speed along as NASA's Perseverance rover readies for its launch this summer. On May 11, the rover team at the agency's Kennedy Space Center in Florida received the tubes tasked with holding the first samples collected at Mars for eventual return to Earth. A week later, the Atlas V launch vehicle that will hurl Perseverance to the Red Planet arrived at the launch site. Working together, personnel from NASA's Jet Propulsion Laboratory in Southern California and United Launch Al ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MARSDAILY
Made in India moon analog soil gets patent for ISRO

US seeks to change the rules for mining the Moon

Lunar Surface Trash or Treasure

Russia says ready to discuss Moon exploration with NASA

MARSDAILY
China space program targets July launch for Mars mission

More details of China's space station unveiled

China's tracking ship Yuanwang-5 back from rocket monitoring mission

China's Kuaizhou rocket industrial park partially operational

MARSDAILY
OSIRIS-REx ready for touchdown on Asteroid Bennu for sample collection

OSIRIS-REx Asteroid Sample Collection Set for October 20th

UH ATLAS telescope discovers first-of-its-kind asteroid

Aerojet Rocketdyne delivers DART spacecraft propulsion systems ahead of 2021 asteroid impact mission

MARSDAILY
SOFIA finds clues hidden in Pluto's haze

New evidence of watery plumes on Jupiter's moon Europa

Telescopes and spacecraft join forces to probe deep into Jupiter's atmosphere

Newly reprocessed images of Europa show 'chaos terrain' in crisp detail

MARSDAILY
Discovered a multilayer haze system on Saturn's Hexagon

Data from NASA's Cassini may explain Saturn's atmospheric mystery

MARSDAILY
Calling for ideas for next Earth Explorer

ESA's oldest Earth-observer images Delhi airport

Common CFC replacements break down into persistent pollutants

Tiny NASA satellite captures first image of clouds and aerosols

MARSDAILY
Barrett, Raymond speak with U.S. astronaut ahead of historic launch

NASA seeking US Citizens for social isolation study for Moon and Mars missions

US Space Council meets ahead of private, US crewed launch

Robert Polsgrove: Commercial Crew to Human Landers

MARSDAILY
Galactic crash may have triggered Solar System formation

The bold plan to see continents and oceans on another earth

Astronomers confirm existence of two giant newborn planets

ESO telescope sees signs of planet birth









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.