Mars Exploration News  
MARSDAILY
The anatomy of a planet
by Staff Writers
Zurich, Switzerland (SPX) Jul 24, 2021

illustration only

Since early 2019, researchers have been recording and analysing marsquakes as part of the InSight mission. This relies on a seismometer whose data acquisition and control electronics were developed at ETH Zurich. Using this data, the researchers have now measured the red planet's crust, mantle and core - data that will help determine the formation and evolution of Mars and, by extension, the entire solar system.

Mars once completely molten
We know that Earth is made up of shells: a thin crust of light, solid rock surrounds a thick mantle of heavy, viscous rock, which in turn envelopes a core consisting mainly of iron and nickel. Terrestrial planets, including Mars, have been assumed to have a similar structure.

"Now seismic data has confirmed that Mars presumably was once completely molten before dividing into the crust, mantle and core we see today, but that these are different from Earth's," says Amir Khan, a scientist at the Institute of Geophysics at ETH Zurich and at the Physics Institute at the University of Zurich. Together with his ETH colleague Simon Stahler, he analysed data from NASA's InSight mission, in which ETH Zurich is participating under the leadership of Professor Domenico Giardini.

No plate tectonics on Mars
The researchers have discovered that the Martian crust under the probe's landing site near the Martian equator is between 15 and 47 kilometres thick. Such a thin crust must contain a relatively high proportion of radioactive elements, which calls into question previous models of the chemical composition of the entire crust.

Beneath the crust comes the mantle with the lithosphere of more solid rock reaching 400-600 kilometres down - twice as deep as on Earth. This could be because there is now only one continental plate on Mars, in contrast to Earth with its seven large mobile plates. "The thick lithosphere fits well with the model of Mars as a 'one-plate planet'," Khan concludes.

The measurements also show that the Martian mantle is mineralogically similar to Earth's upper mantle. "In that sense, the Martian mantle is a simpler version of Earth's mantle." But the seismology also reveals differences in chemical composition. The Martian mantle, for example, contains more iron than Earth's. However, theories as to the complexity of the layering of the Martian mantle also depend on the size of the underlying core - and here, too, the researchers have come to new conclusions.

The core is liquid and larger than expected
The Martian core has a radius of about 1,840 kilometres, making it a good 200 kilometres larger than had been assumed 15 years ago, when the InSight mission was planned. The researchers were now able to recalculate the size of the core using seismic waves. "Having determined the radius of the core, we can now calculate its density," Stahler says.

"If the core radius is large, the density of the core must be relatively low," he explains: "That means the core must contain a large proportion of lighter elements in addition to iron and nickel."

These include sulphur, oxygen, carbon and hydrogen, and make up an unexpectedly large proportion. The researchers conclude that the composition of the entire planet is not yet fully understood. Nonetheless, the current investigations confirm that the core is liquid - as suspected - even if Mars no longer has a magnetic field.

Reaching the goal with different waveforms
The researchers obtained the new results by analysing various seismic waves generated by marsquakes. "We could already see different waves in the InSight data, so we knew how far away from the lander these quake epicentres were on Mars," Giardini says.

To be able to say something about a planet's inner structure calls for quake waves that are reflected at or below the surface or at the core. Now, for the first time, researchers have succeeded in observing and analysing such waves on Mars.

"The InSight mission was a unique opportunity to capture this data," Giardini says. The data stream will end in a year when the lander's solar cells are no longer able to produce enough power.

"But we're far from finished analysing all the data - Mars still presents us with many mysteries, most notably whether it formed at the same time and from the same material as our Earth." It is especially important to understand how the internal dynamics of Mars led it to lose its active magnetic field and all surface water. "This will give us an idea of whether and how these processes might be occurring on our planet," Giardini explains. "That's our reason why we are on Mars, to study its anatomy."

Research Report: "Upper mantle structure of Mars from InSight seismic data"


Related Links
ETH Zurich
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MARSDAILY
The Red Planet has a larger core and a thinner crust
Berlin, Germany (SPX) Jul 24, 2021
Mars' surface is known in great detail through exploration using orbiting spacecraft. But until now its interior structure could only be derived indirectly or simulated using computational models. With the participation of the German Aerospace Center (Deutsches Zentrum fur Luft- und Raumfahrt; DLR), NASA's InSight mission has provided surprising new discoveries. The core of our planetary neighbour is larger than previously thought, and the overlying mantle has a structure similar to Earth's upper ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MARSDAILY
Apollo to Artemis: Drilling on the Moon

Mini radar could scan the Moon for water and habitable tunnels

Bezos offers NASA a $2 billion discount for Blue Origin Moon lander

Government watchdog denies protests of SpaceX's lunar lander contract

MARSDAILY
China's space propaganda blitz endures at slick new planetarium

How Chinese astronauts stay healthy in space

China's five-star red flag flies proudly on red planet

China's Commercial Space Industry

MARSDAILY
Western leads global project observing rare meteor showers and meteorite falls

Red bodies similar to Kuiper objects found in main asteroid belt

SwRI team zeroes in on source of the impactor that wiped out the dinosaurs

Tail without a comet: the dusty remains of Comet ATLAS

MARSDAILY
Hubble finds first evidence of water vapor on Ganymede

NASA Awards Launch Services Contract for the Europa Clipper Mission

Juno tunes into Jovian radio triggered by Jupiter's volcanic moon Io

Ride with Juno as it flies past Jupiter and Ganymede

MARSDAILY
Icequakes likely rumble along geyser-spitting fractures in Saturn's icy moon Enceladus

Methane in the plumes of Saturn's moon Enceladus: Possible signs of life?

Glenn researchers study new, futuristic concept to explore Titan

Johns Hopkins Scientists Model Saturn's Interior

MARSDAILY
Ball Aerospace completes preliminary design review of NOAA's Space Weather Satellite

Kleos establishes partnership with Japan Space Imaging Corporation for promotion in Japan

Airbus completes integration of 3rd Copernicus Sentinel-2

Earth's 'vital signs' worsening as humanity's impact deepens

MARSDAILY
What you need to know about Starliner's Test-2

Progress 77 and Pirs undocked from Station

High-stakes Boeing capsule launch postponed due to mishap at ISS

Space Tourism, Space Entrepreneurs and the Business and Economics of Space

MARSDAILY
Astronomers show how planets form in binary systems without getting crushed

Galileo Project to search for ET artifacts in galactic space

From the sun to the stars: A journey of exoplanet discovery begins

ALMA images moon-forming disk around alien world









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.