SwRI scientist proposes a new timeline for Mars terrains by Staff Writers San Antonio TX (SPX) Feb 12, 2021
A Southwest Research Institute scientist has updated Mars chronology models to find that terrains shaped by ancient water activity on the planet's surface may be hundreds of millions of years older than previously thought. This new chronology for Mars, based on the latest dynamical models for the formation and evolution of the solar system, is particularly significant as the days count down until NASA's Mars 2020 Perseverance rover lands on the Red Planet on February 18, 2021. Unlike on Earth, where terrains are commonly dated using natural radioactivity of rocks, scientists have largely constrained the chronology of Mars by counting impact craters on its surface. "The idea behind crater dating is not rocket science; the more craters, the older the surface," says SwRI's Dr. Simone Marchi, who published a paper about these findings accepted for publication in The Astronomical Journal. "But the devil is in the details. Craters form when asteroids and comets strike the surface. The rate of these cosmic crashes over the eons is uncertain, hampering our ability to convert crater numbers to terrain ages. I took a fresh look at this and built on recent developments in the way we understand the earliest evolution of the solar system." Scientists have used radiometric ages of precious lunar rocks brought back by the Apollo missions to calibrate a lunar crater chronology. This lunar chronology is then extrapolated to Mars, and this is where things get tangled with the earliest evolution of the solar system. Our understanding of the time evolution of lunar and Martian impact rates has greatly improved in recent years. The present model improves upon how the critical Moon-to-Mars extrapolations are done. "For this paper, I looked particularly at the Jezero Crater because that is the landing site for the Mars 2020 Perseverance rover," Marchi said. "These surfaces could have formed over 3 billion years ago, as much as 500 million years older than previously thought. NASA plans to have Perseverance gather and package surface samples that can be collected by a future mission for return to Earth for radiometric dating. That could provide vital ground-truth data to better calibrate our chronology models." Jezero Crater has a diameter of about 30 miles located within the 750-mile-wide Isidis Basin, created by an earlier impact. The latter cut a wide portion of the Borealis Basin's rim, perhaps the largest and oldest impact basin on Mars. This coincidence of nested craters is of particular interest as samples from these terrains may return information about the timing of these consecutive impacts. Furthermore, Jezero Crater hosts clay-rich terrains and a fluvial delta, indications that the crater once hosted a lake. This makes the Jezero Crater an ideal place to fulfill the Mars 2020 mission's science goal of studying a potentially habitable environment that may still preserve signs of past life. As such, understanding the timeline of these surfaces is particularly important. The new model also provides a revised age for Isidis Basin, now estimated to be 4-4.2 billion years old, providing an upper limit for the formation of Jezero Crater and water activity at this location on Mars.
Research Report: "A new Martian crater chronology: Implications for Jezero crater"
UAE's 'Hope' probe to be first in trio of Mars missions Dubai (AFP) Feb 7, 2021 The first Arab space mission, the UAE's "Hope" probe, is expected to reach Mars' orbit on Tuesday, making it the first of three spacecraft to arrive at the Red Planet this month. The United Arab Emirates, China and the United States all launched projects to Mars last July, taking advantage of a period when the Earth and Mars are nearest. If succesful, the wealthy Gulf state will become the fifth nation to ever reach Mars - a venture timed to mark the 50th anniversary of the unification of the U ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |