Searching for Sand Transport by Mariah Baker | Planetary Scientist - Smithsonian Pasadena CA (JPL) Jul 11, 2022
Perseverance is currently stopped for sampling at Skinner Ridge rock. Sampling activities constitute an important aspect of Perseverance's mission, and the rover's strategic path is developed around sampling stops. During these stops, the rover must remain stationary for at least twelve sols in order to conduct proximity science and activities related to abrasion and coring. But being parked in one location for this extended period of time is also useful for something else. Sampling stops provide rare opportunities to conduct "change detection" experiments, which are used to monitor wind-driven - or aeolian - transport of sand. The basic concept behind change detection is simple: compare identical images of the surface acquired at different times to search for wind-induced movement of sand. These observations can be used to deduce information about the relative strength and direction of winds blowing in the time between the two images. Sand deposits and aeolian bedforms (such as the sand ripples seen in the accompanying Mastcam-Z image) are ideal targets for change detection. Perseverance is not the first spacecraft to perform this type of imaging experiment. In fact, change detection experiments have been conducted for many decades, stretching back to the earliest missions sent to Mars. Theories developed prior to robotic exploration predicted that contemporary Martian winds would rarely, if ever, be capable of transporting sand. Paradoxically, change detection images acquired from orbiting cameras have revealed active migration of sand dunes across the planet. Developing models that can effectively explain and predict aeolian activity on Mars is vital for interpreting the planet's climatic and geologic history, as well as mitigating risks to landed spacecraft and future human explorers. Surface missions enable researchers to study ongoing aeolian activity in greater detail and with higher spatiotemporal resolution than can be achieved from orbit, which is necessary for reconciling the discrepancy between theory and observation. Sand motion has been observed and studied in situ at spacecraft landing sites, including Gale crater and Jezero crater. Images acquired during Perseverance's ongoing activities at Skinner Ridge rock and at future sampling stops will be used to further characterize the aeolian environment in Jezero and will provide new insight into enigmatic Martian winds.
Sometimes things get complicated Pasadena CA (JPL) Jul 07, 2022 Perseverance has a big job to do while roving across Jezero and exploring the Delta Front, which is campaign #2 of the mission. One of the major goals of this mission (and campaign) is searching for evidence of past life, and we know from studying deltas on Earth that fine-grained clay-rich rocks in these environments are some of the best at preserving ancient biomarkers. Biomarkers, or "molecular fossils," are complex organic molecules created by life and preserved in rock for up to billions of years f ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |