Mars Exploration News  
MARSDAILY
Sculpted by nature on Mars
by Staff Writers
Paris (ESA) May 15, 2020

This image shows a part of Mars' surface located northeast of the Tharsis volcanic province. This is a portion of Tempe Fossae - a series of tectonic faults that cuts across Tempe Terra in Mars' northern highlands. It comprises data gathered on 30 September 2019 during orbit 19913. The ground resolution is approximately 15 m/pixel and the images are centred at about 279E/36N. This image was created using data from the nadir and colour channels of the High Resolution Stereo Camera (HRSC). The nadir channel is aligned perpendicular to the surface of Mars, as if looking straight down at the surface. This HRSC stereo imaging was then used to derive a digital elevation model, upon which this oblique view is based.

Nature is a powerful sculptor - as shown in this image from ESA's Mars Express, which portrays a heavily scarred, fractured martian landscape. This terrain was formed by intense and prolonged forces that acted upon Mars' surface for hundreds of millions of years.

Features on Mars often trick the eye. It can be difficult to tell if the ground has risen up towards you, or dropped away. This is a common phenomenon with impact craters especially, and is aptly named the 'crater/dome illusion'; in some images, craters appear to be large domes arching up towards the viewer - but look again, and they instead become a depression in the surrounding terrain, as expected.

Such a phenomenon is at play in this image from Mars Express, which shows part of Tempe Fossae, a series of faults that cuts across the region of Tempe Terra in Mars' northern highlands.

Upon first glance, it is difficult to tell if ground is rising up, sinking down, or a mix of both. The landscape here is scratched, scored, and wrinkled: ridges slice across the frame, interspersed with the odd impact crater, and the entire region is full of cliffs and chasms.

The terrain here belongs to the volcanic Tharsis province, also known as Tharsis rise, which is located close to the planet equator, at the boundary between low plains in the Northern hemisphere and highlands in the South, and displays a complex geology originating from the processes involved in its formation.

Tempe Fossae is a great example of terrain featuring two key martian features: grabens and horsts. In a way, these are opposites of one another - grabens are slices of ground that have dropped down between two roughly parallel faults, while horsts are ground that has been uplifted between faults.

At most, the grabens seen here reach a few kilometres wide, a few hundred metres deep, and several hundred kilometres long. Both were created by volcanic and tectonic forces acting across the surface of Mars, which fractured the ground and manipulated it into new configurations. Mars Express has observed these features many times before, in regions including Claritas Fossae, Acheron Fossae, and the nearby Ascuris Planum.

Despite any initial visual confusion, this landscape is a mix of faults, elevated ground, deep valleys, and largely parallel ridges, extending both down into the surface and up above the martian crust. The crater/dome illusion is actually just a trick of the light caused by our eyes incorrectly interpreting shadows. Comparing this image to the aforementioned image of Ascuris Planum, a similar terrain, highlights this nicely, demonstrating the importance of lighting conditions in photography.

Our Earth-bound eyes are accustomed to seeing images lit from above, but this is not the default orientation for spacecraft, which can gather data at all angles of sunlight.

Mars Express has a peculiar orbit that is not Sun-synchronous. Sun-synchronous orbits pass over the same spot on a planetary surface at roughly the same local time of day on every orbit - for instance, Earth orbiters passing over a certain city at around noon every day.

Mars Express, however, does not do this, and can therefore gather data at a wide range of local times on Mars. As a result, it experiences a range of different illumination conditions as it observes the Red Planet, and produces a varied array of observations and snapshots of our planetary neighbour.

To the right of the frame (pointing to the planet's north), the surface becomes significantly smoother, with grabens and horsts almost nowhere to be seen. This smoother profile is a result of lava flooding these features before cooling and solidifying, in-filling and resurfacing this part of Mars.

While most of the ridges seen here run parallel to one another from the upper left to lower right, there are also a few scratches cutting across in a perpendicular direction. This is an effect of location, as this patch of terrain is just northeast of the well-known Tharsis province, a past hotspot on Mars for substantial volcanic and tectonic activity.

Tharsis is sizeable. The province measures several thousand kilometres across and five kilometres high on average relative to martian 'sea level' - a level that, given the planet's lack of seas, is arbitrarily defined on Mars based on elevation and atmospheric pressure. It hosts the largest volcanoes in the entire Solar System, ranging from 15 to over 20 kilometres in height.

As the province grew larger and larger over several hundreds of millions of years, it stretched and stressed the surrounding crust, causing it to fracture and tear in different directions. The perpendicular slices seen in this image are evidence of a change in the direction of stress.

While the formation of Tharsis caused tectonic activity locally, as shown by these slices, it also influenced Mars' crust on a much larger scale and is thought to have had a major influence in forming Valles Marineris, the largest canyon in the Solar System. Widespread erosion has occurred in Valles Marineris since its formation, shaping and sculpting the landscape into the canyon system we see today.

Exploring the geology of Mars is a key objective of Mars Express. Launched in 2003, the spacecraft has been orbiting the Red Planet for over a decade and a half; it has since been joined by the ESA-Roscosmos ExoMars Trace Gas Orbiter (TGO), which arrived in 2016, while the ExoMars Rosalind Franklin rover and its accompanying surface science platform are scheduled for launch in 2022.

The fleet of spacecraft currently at Mars, operated by several space agencies, are able to image the planet's surface at scales from the global (with a spatial resolution of around ten metres) to the local (spatial resolution of around one metre). This combination allows scientists to characterise geological processes at global, regional, and local scales, enabling them to work towards a fuller understanding of Mars and its intriguing history.


Related Links
Mars Express at ESA
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MARSDAILY
Moreux Crater on Mars offers evidence of dunes and glacial processes
Berlin, Germany (SPX) Mar 06, 2020
The images shown here, which were acquired by the High Resolution Stereo Camera (HRSC) on board ESA's Mars Express orbiter, reveal the impressive Moreux Crater on Mars. Glaciers have left their mark on the crater rim and floor, and have significantly altered the terrain. This striking view is complemented by a number of distinctive dark dunes. These formations bear witness to the influence of the prevailing wind systems. HRSC was developed and is operated by the German Aerospace Center (Deutsches ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MARSDAILY
New evidence shows giant meteorite impacts formed parts of the moon's crust

Violent meteorite impacts forged parts of the lunar crust

Astrobotic to develop new commercial payload service for NASA human lunar lander

Faces behind NASA's Gateway

MARSDAILY
China's Kuaizhou rocket industrial park partially operational

China's tracking ship Yuanwang-5 back from rocket monitoring mission

China's experimental new-generation manned spaceship works normally in orbit

Long March-5B rocket enables China to construct space station

MARSDAILY
Hayabusa2 reveals more secrets from Ryugu

Hayabusa2's touchdown on Ryugu reveals its surface in stunning detail

The discovery of Comet SWAN by solar-watcher SOHO

NASA DART mission may cause first ever human-induced meteor shower

MARSDAILY
SOFIA finds clues hidden in Pluto's haze

New evidence of watery plumes on Jupiter's moon Europa

Telescopes and spacecraft join forces to probe deep into Jupiter's atmosphere

Newly reprocessed images of Europa show 'chaos terrain' in crisp detail

MARSDAILY
Discovered a multilayer haze system on Saturn's Hexagon

Data from NASA's Cassini may explain Saturn's atmospheric mystery

Why is NASA Sending Dragonfly to Titan

MARSDAILY
Space video streaming company Sen awards Momentus orbital deployment contract

NASA CubeSat Mission to Gather Vital Space Weather Data

New, rapid mechanism for atmospheric particle formation

exactEarth joins Mayflower Autonomous Ship Project

MARSDAILY
Roscosmos confirms signing contract for NASA Astronaut's flight to ISS

NASA Funds Artemis Student Challenges to Inspire Space Exploration

Spacesuit for the ground

Astronauts Leave "Microbial Fingerprint" on Space Station

MARSDAILY
Amsterdam researchers observe iron in exoplanetary atmosphere

New 'planetary quarantine' report reviewing risks of alien contamination

Scientists reveal solar system's oldest molecular fluids could hold the key to early life

Life on the rocks helps scientists understand how to survive in extreme environments









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.