Salt water may periodically form on the surface of Mars by Staff Writers Tucson AZ (SPX) Feb 13, 2020
Briny water may form on the surface of Mars a few days per year, research by Planetary Science Institute (PSI) Senior Scientist Norbert Schorghofer shows. Liquid water is difficult to come by on Mars, because ice rapidly dissipates, or sublimates, into the atmosphere long before it reaches its melting point. That is because the atmospheric pressure on Mars lies near the triple point pressure of H2O, the minimum pressure necessary for liquid water to exist. "Mars has plenty of cold ice-rich regions and plenty of warm ice-free regions, but icy regions where the temperature rises above the melting point are a sweet spot that is nearly impossible to find. That sweet spot is where liquid water would form," Schorghofer said. The process works as follows: a boulder sitting on the surface at mid-latitudes casts a shadow in winter. The continually shadowed area behind the boulder is very cold, so cold that water ice accumulates in winter. When the Sun rises again in spring, the ice suddenly heats up. In detailed model calculations, the temperature rises from -128 degrees Celsius in the morning to -10 degrees Celsius at noon, a huge change over a quarter of a day. Over such a short time, not all of the frost is lost to the atmosphere. Salt depresses the melting point of H2O, so on salt-rich ground, water ice will melt at -10 degrees Celsius. Brines, or salty water, will form until all of the ice has either turned to liquid or vapor. Next Mars year, the same process repeats. The shadowed areas behind the boulders are so cold in winter that not only water frost but also carbon dioxide ice builds up. For Mars, the first day without carbon dioxide ice in spring is called the "crocus date." Melting occurs on or immediately after the crocus date, and therefore the term "crocus melting". "Answering the question whether crocus melting of seasonal water ice actually occurs on Mars required a slew of detailed quantitative calculations - the numbers really matter," Schorghofer said. "It took decades to develop the necessary quantitative models." Schorghofer's paper "Mars: Quantitative evaluation of crocus melting behind boulders" appears in the Astrophysics Journal. Schorghofer's work was funded by a grant to PSI from NASA's Habitable Worlds program.
Research Report: "Mars: Quantitative Evaluation of Crocus Melting behind Boulders"
Mars' water was mineral-rich and salty Tokyo, Japan (SPX) Jan 24, 2020 Presently, Earth is the only known location where life exists in the Universe. This year the Nobel Prize in physics was awarded to three astronomers who proved, almost 20 years ago, that planets are common around stars beyond the solar system. Life comes in various forms, from cell-phone-toting organisms like humans to the ubiquitous micro-organisms that inhabit almost every square inch of the planet Earth, affecting almost everything that happens on it. It will likely be some time before it is po ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |