Results of Mars 2020 heat shield testing by Staff Writers Pasadena CA (JPL) Apr 30, 2018
A post-test inspection of the composite structure for a heat shield to be used on the Mars 2020 mission revealed that a fracture occurred during structural testing. The mission team is working to build a replacement heat shield structure. The situation will not affect the mission's launch readiness date of July 17, 2020. Project management at NASA's Jet Propulsion Laboratory in Pasadena, California, is working with contractor Lockheed Martin Space, Denver, to understand the cause of the fracture and determine whether any design changes need to be incorporated into a replacement. The fracture, which occurred near the shield's outer edge and spans the circumference of the component, was discovered on April 12, after the shield completed a week-long test at the Lockheed Martin Space facility. The test was designed to subject the heat shield to forces up to 20 percent greater than those expected during entry into the Martian atmosphere. While the fracture was unexpected, it represents why spaceflight hardware is tested in advance so that design changes or fixes can be implemented prior to launch. The heat shield is part of the thermal protection system and aeroshell designed to encapsulate and protect the Mars 2020 rover and landing system from the intense heat generated during descent into the Martian atmosphere. The structure was originally tested in 2008 and wasone of two heat shields manufactured in support of the Mars Science Laboratory mission, which successfully landed the Curiosity rover on Mars in August 2012. The current heat shield will be repaired in order to support the prelaunch spacecraft testing while a new heat shield structure is readied for flight over the next year. Once the new structure is complete and tested, the thermal protection tiles will then be installed for flight, and the heatshield and other components of the aeroshell will be delivered to NASA's Kennedy Space Center in Florida for final spacecraft processing prior to launch.
SwRI's Martian moons model indicates formation following large impact San Antonio TX (SPX) Apr 19, 2018 Southwest Research Institute scientists posit a violent birth of the tiny Martian moons Phobos and Deimos, but on a much smaller scale than the giant impact thought to have resulted in the Earth-Moon system. Their work shows that an impact between proto-Mars and a dwarf-planet-sized object likely produced the two moons, as detailed in a paper published in Science Advances. The origin of the Red Planet's small moons has been debated for decades. The question is whether the bodies were asteroids cap ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |