Mars Exploration News  
MARSDAILY
Perseverance Mars Rover's extraordinary sample-gathering system
by Staff Writers
Pasadena CA (JPL) Jun 03, 2020

JPL engineers monitor testing of the Perseverance rover's Sample Caching System in this video clip.

Two astronauts collected Moon rocks on Apollo 11. It will take three robotic systems working together to gather up the first Mars rock samples for return to Earth.

The samples Apollo 11 brought back to Earth from the Moon were humanity's first from another celestial body. NASA's upcoming Mars 2020 Perseverance rover mission will collect the first samples from another planet (the red one) for return to Earth by subsequent missions. In place of astronauts, the Perseverance rover will rely on the most complex, capable and cleanest mechanism ever to be sent into space, the Sample Caching System.

The final 39 of the 43 sample tubes at the heart of the sample system were loaded, along with the storage assembly that will hold them, aboard NASA's Perseverance rover on May 20 at Kennedy Space Center in Florida. (The other four tubes had already been loaded into different locations in the Sample Caching System.) The integration of the final tubes marks another key step in preparation for the opening of the rover's launch period on July 17.

"While you cannot help but marvel at what was achieved back in the days of Apollo, they did have one thing going for them we don't: boots on the ground," said Adam Steltzner, chief engineer for the Mars 2020 Perseverance rover mission at NASA's Jet Propulsion Laboratory in Southern California. "For us to collect the first samples of Mars for return to Earth, in place of two astronauts we have three robots that have to work with the precision of a Swiss watch."

While many people think of the Perseverance rover as one robot, it's actually akin to a collection of robots working together. Located on the front of the Perseverance rover, the Sample Caching System itself is composed of three robots, the most visible being the rover's 7-foot-long (2-meter-long) robotic arm. Bolted to the front of the rover's chassis, the five-jointed arm carries a large turret that includes a rotary percussive drill to collect core samples of Mars rock and regolith (broken rock and dust).

The second robot looks like a small flying saucer built into the front of the rover. Called the bit carousel, this appliance is the ultimate middleman for all Mars sample transactions: It will provide drill bits and empty sample tubes to the drill and will later move the sample-filled tubes into the rover chassis for assessment and processing.

The third robot in the Sample Caching System is the 1.6-foot-long (0.5 meter-long) sample handling arm (known by the team as the "T. rex arm"). Located in the belly of the rover, it picks up where the bit carousel leaves off, moving sample tubes between storage and documentation stations as well as the bit carousel.

Clocklike Precision
All of these robots need to run with clocklike precision. But where the typical Swiss chronometer has fewer than 400 parts, the Sample Caching System has more than 3,000.

"It sounds like a lot, but you begin to realize the need for complexity when you consider the Sample Caching System is tasked with autonomously drilling into Mars rock, pulling out intact core samples and then sealing them hermetically in hyper-sterile vessels that are essentially free of any Earth-originating organic material that could get in the way of future analysis," said Steltzner. "In terms of technology, it is the most complicated, most sophisticated mechanism that we have ever built, tested and readied for spaceflight."

The mission's goal is to collect a dozen or more samples. So how does this three-robot, steamer-trunk-sized labyrinthine collection of motors, planetary gearboxes, encoders and other devices all meticulously work together to take them?

"Essentially, after our rotary percussive drill takes a core sample, it will turn around and dock with one of the four docking cones of the bit carousel," said Steltzner. "Then the bit carousel rotates that Mars-filled drill bit and a sample tube down inside the rover to a location where our sample handling arm can grab it. That arm pulls the filled sample tube out of the drill bit and takes it to be imaged by a camera inside the Sample Caching System."

After the sample tube is imaged, the small robotic arm moves it to the volume assessment station, where a ramrod pushes down into the sample to gauge its size. "Then we go back and take another image," said Steltzner. "After that, we pick up a seal - a little plug - for the top of the sample tube and go back to take yet another image."

Next, the Sample Caching System places the tube in the sealing station, where a mechanism hermetically seals the tube with the cap. "Then we take the tube out," added Steltzner, "and we return it to storage from where it first began."

Getting the system designed and manufactured, then integrated into Perseverance has been a seven-year endeavor. And the work isn't done. As with everything else on the rover, there are two versions of the Sample Caching System: an engineering test model that will stay here on Earth and the flight model that will travel to Mars.

"The engineering model is identical in every way possible to the flight model, and it's our job to try to break it," said Kelly Palm, the Sample Caching System integration engineer and Mars 2020 test lead at JPL. "We do that because we would rather see things wear out or break on Earth than on Mars. So we put the engineering test model through its paces to inform our use of its flight twin on Mars."

To that end, the team uses different rocks to simulate types of terrain. They drill them from various angles to anticipate any imaginable situation the rover could be in where the science team might want to gather a sample.

"Every once in a while, I have to take a minute and contemplate what we are doing," said Palm. "Just a few years ago I was in college. Now I am working on the system that will be responsible for collecting the first samples from another planet for return to Earth. That is pretty awesome."


Related Links
Mars 2020 Perseverance rover
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MARSDAILY
The detective aboard NASA's Perseverance Rover
Pasadena CA (JPL) May 27, 2020
Mars is a long way from 221B Baker Street, but one of fiction's best-known detectives will be represented on the Red Planet after NASA's Perseverance rover touches down on Feb. 18, 2021. SHERLOC, an instrument on the end of the rover's robotic arm, will hunt for sand-grain-sized clues in Martian rocks while working in tandem with WATSON, a camera that will take close-up pictures of rock textures. Together, they will study rock surfaces, mapping out the presence of certain minerals and organic molecules, ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MARSDAILY
NASA awards $3M to develop Lunar LASVEGAS

New study provides maps, ice favorability index to companies looking to mine the moon

Get your ticket to the Moon: Europe's lunar lander for science and more

Will US Attempt to Introduce New Moon Mining Rules Trigger New Space Race?

MARSDAILY
China space program targets July launch for Mars mission

More details of China's space station unveiled

China's tracking ship Yuanwang-5 back from rocket monitoring mission

China's Kuaizhou rocket industrial park partially operational

MARSDAILY
The asteroids Ryugu and Bennu were formed by the destruction of a large asteroid

Asteroids Bennu and Ryugu may have formed directly from collision in space

Solar Orbiter to pass through tails of Comet ATLAS

Dinosaur-dooming asteroid struck earth at 'deadliest possible' angle

MARSDAILY
SOFIA finds clues hidden in Pluto's haze

New evidence of watery plumes on Jupiter's moon Europa

Telescopes and spacecraft join forces to probe deep into Jupiter's atmosphere

Newly reprocessed images of Europa show 'chaos terrain' in crisp detail

MARSDAILY
Discovered a multilayer haze system on Saturn's Hexagon

Data from NASA's Cassini may explain Saturn's atmospheric mystery

MARSDAILY
Calling for ideas for next Earth Explorer

NASA's AIM Spots First Arctic Noctilucent Clouds of the Season

Volcanic eruptions reduce global rainfall

ESA's oldest Earth-observer images Delhi airport

MARSDAILY
No SpaceX T-shirts for tourists at Cape Canaveral

Airbus wins ESA contract to construct third European Service Module for NASA's Orion spacecraft

Doug Liman to direct Tom Cruise film shot in space

Barrett, Raymond speak with U.S. astronaut ahead of historic launch

MARSDAILY
Distance from Brightest Stars Is Key to Preserving Primordial Discs

Astronomers create cloud atlas for hot, Jupiter-like exoplanets

Galactic crash may have triggered Solar System formation

ESPRESSO confirms the presence of an Earth around the nearest star









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.