Mars Exploration News  
MARSDAILY
Perseverance Makes New Discoveries in Mars' Jezero Crater
by Staff Writers
Pasadena CA (JPL) Aug 26, 2022

NASA's Perseverance Mars rover took this selfie over a rock nicknamed "Rochette," on September 10, 2021, the 198th Martian day, or sol of the mission. Two holes can be seen where the rover used its robotic arm to drill rock core samples. There are two versions of the selfie: Figure 1 shows Perseverance looking at the rock holes and Figure 2 shows it looking back at the camera. Each version is made up of 57 individual images that are sent back down to Earth and stitched into the resulting selfies.

Scientists got a surprise when NASA's Perseverance Mars rover began examining rocks on the floor of Jezero Crater in spring of 2021: Because the crater held a lake billions of years ago, they had expected to find sedimentary rock, which would have formed when sand and mud settled in a once-watery environment. Instead, they discovered the floor was made of two types of igneous rock - one that formed deep underground from magma, the other from volcanic activity at the surface.

The findings are described in four new papers published Thursday, Aug. 25. In Science, one offers an overview of Perseverance's exploration of the crater floor before it arrived at Jezero's ancient river delta in April 2022; a second study in the same journal details distinctive rocks that appear to have formed from a thick body of magma. The other two papers, published in Science Advances, detail the unique ways that Perseverance's rock-vaporizing laser and ground-penetrating radar established that igneous rocks cover the crater floor.

Rock of Ages
Igneous rocks are excellent timekeepers: Crystals within them record details about the precise moment they formed.

"One great value of the igneous rocks we collected is that they will tell us about when the lake was present in Jezero. We know it was there more recently than the igneous crater floor rocks formed," said Ken Farley of Caltech, Perseverance's project scientist and the lead author of the first of the new Science papers. "This will address some major questions: When was Mars' climate conducive to lakes and rivers on the planet's surface, and when did it change to the very cold and dry conditions we see today?"

However, because of how it forms, igneous rock isn't ideal for preserving the potential signs of ancient microscopic life Perseverance is searching for. In contrast, determining the age of sedimentary rock can be challenging, particularly when it contains rock fragments that formed at different times before the rock sediment was deposited. But sedimentary rock often forms in watery environments suitable for life and is better at preserving ancient signs of life.

That's why the sediment-rich river delta Perseverance has been exploring since April 2022 has been so tantalizing to scientists. The rover has begun drilling and collecting core samples of sedimentary rocks there so that the Mars Sample Return campaign could potentially return them to Earth to be studied by powerful lab equipment too large to bring to Mars.

Mysterious Magma-Formed Rocks
A second paper published in Science solves a longstanding mystery on Mars. Years ago, Mars orbiters spotted a rock formation filled with the mineral olivine. Measuring roughly 27,000 square miles (70,000 square kilometers) - nearly the size of South Carolina - this formation extends from the inside edge of Jezero Crater into the surrounding region.

Scientists have offered various theories why olivine is so plentiful over such a large area of the surface, including meteorite impacts, volcanic eruptions, and sedimentary processes. Another theory is that the olivine formed deep underground from slowly cooling magma - molten rock - before being exposed over time by erosion.

Yang Liu of NASA's Jet Propulsion Laboratory in Southern California and her co-authors have determined that last explanation is the most likely. Perseverance abraded a rock to reveal its composition; studying the exposed patch, the scientists homed in on the olivine's large grain size, along with the rock's chemistry and texture.

Using Perseverance's Planetary Instrument for X-ray Lithochemistry, or PIXL, they determined the olivine grains in the area measure 1 to 3 millimeters - much larger than would be expected for olivine that formed in rapidly cooling lava at the planet's surface.

"This large crystal size and its uniform composition in a specific rock texture require a very slow-cooling environment," Liu said. "So, most likely, this magma in Jezero wasn't erupting on the surface."

Unique Science Tools
The two Science Advances papers detail the findings of science instruments that helped establish that igneous rocks cover the crater floor. The instruments include Perseverance's SuperCam laser and a ground-penetrating radar called RIMFAX (Radar Imager for Mars' Subsurface Experiment).

SuperCam is equipped with rock-vaporizing laser that can zap a target as small as a pencil tip from up to 20 feet (7 meters) away. It studies the resulting vapor using a visible-light spectrometer to determine a rock's chemical composition. SuperCam zapped 1,450 points during Perseverance's first 10 months on Mars, helping scientists arrive at their conclusion about igneous rocks on the crater floor.

In addition, SuperCam used near-infrared light - it's the first instrument on Mars with that capability - to find that water altered minerals in the crater floor rocks. However, the alterations weren't pervasive throughout the crater floor, according to the combination of laser and infrared observations.

"SuperCam's data suggests that either these rock layers were isolated from Jezero's lake water or that the lake existed for a limited duration," said Roger Wiens, SuperCam's principal investigator at Purdue University and Los Alamos National Laboratory.

RIMFAX marks another first: Mars orbiters carry ground-penetrating radars, but no spacecraft on the surface of Mars have before Perseverance. Being on the surface, RIMFAX can provide unparalleled detail, and surveyed the crater floor as deep as 50 feet (15 meters).

Its high-resolution "radargrams" show rock layers unexpectedly inclined up to 15 degrees underground. Understanding how these rock layers are ordered can help scientists build a timeline of Jezero Crater's formation.

"As the first such instrument to operate on the surface of Mars, RIMFAX has demonstrated the potential value of a ground-penetrating radar as a tool for subsurface exploration," said Svein-Erik Hamran, RIMFAX's principal investigator at the University of Oslo in Norway.

The science team is excited by what they've found so far, but they're even more excited about the science that lies ahead.


Related Links
Mars Sample Return campaign
Mars 2020 Perseverance
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MARSDAILY
Perseverance Soon Heads to 'Enchanted Lake'
Pasadena CA (JPL) Aug 23, 2022
After an extended stay at "Wildcat Ridge," the Perseverance team is preparing to head southwest to another sedimentary outcrop on the Jezero Crater delta called Enchanted Lake. This site has enchanted our science team since we first visited it back April. The drive to "Enchanted Lake" is expected to begin in the next few days with arrival in early September. Before beginning the drive, we'll continue efforts to assess the two small, string-like pieces of foreign object debris (FOD) detected ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MARSDAILY
All systems go for Artemis 1 mission to Moon

Thermophysical properties of lunar farside regolith with in-situ temperature measurement by Chang'E-4

UCL team maps moon's surface for NASA missions

An overview of NASA's Artemis 1 mission to the Moon

MARSDAILY
Plant growth in China's space lab in good condition

Energy particle detector helps Shenzhou-14 crew conduct EVAs

China conducts spaceplane flight test

103rd successful rocket launch breaks record

MARSDAILY
DART team confirms orbit of targeted asteroid

Madrid meteor's cometary origins unearthed

Dust grains older than our sun found in Asteroid Ryugu samples

NASA's Lucy team discovers moon around asteroid Polymele

MARSDAILY
Uranus to begin reversing path across the night sky on Wednesday

The PI's Perspective: Extending Exploration and Making Distant Discoveries

Underwater snow gives clues about Europa's icy shell

Why Jupiter doesn't have rings like Saturn

MARSDAILY
Lowell Observatory points telescopes at Saturn during closest annual approach

SwRI researcher shows how elliptical craters could shed light on age of Saturn's moons

MARSDAILY
Accenture invests in hyperspectral satellite company Pixxel to monitor Earth's health

AIR releases upgraded remote sensing monitoring and forecasting system of vegetation pests and diseases

BlackSky awarded NASA contract to advance Earth Science research

Long March successfully deploys Beijing 3B satellite

MARSDAILY
US should end ISS collaboration with Russia

Boeing eyes February for space capsule's first crewed flight

NASA awards contract to demonstrate trash compacting system for ISS

NASA repairs issue with Voyager 1 space probe

MARSDAILY
Webb telescope finds CO2 for first time in exoplanet atmosphere

JWST makes first unequivocal detection of carbon dioxide in an exoplanet atmosphere

An extrasolar world covered in water

Webb detects carbon dioxide in exoplanet atmosphere









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.