Mars Exploration News  
MARSDAILY
On Mars, sands shift to a different drum
by Staff Writers
Tucson AZ (SPX) May 24, 2019

file image

Wind has shaped the face of Mars for millennia, but its exact role in piling up sand dunes, carving out rocky escarpments or filling impact craters has eluded scientists until now.

In the most detailed analysis of how sands move around on Mars, a team of planetary scientists led by Matthew Chojnacki at the University of Arizona Lunar and Planetary Lab set out to uncover the conditions that govern sand movement on Mars and how they differ from those on Earth.

The results, published in the current issue of the journal Geology, reveal that processes not involved in controlling sand movement on Earth play major roles on Mars, especially large-scale features on the landscape and differences in landform surface temperature.

"Because there are large sand dunes found in distinct regions of Mars, those are good places to look for changes," said Chojnacki, associate staff scientist at the UA and lead author of the paper, "Boundary conditions controls on the high-sand-flux regions of Mars."

"If you don't have sand moving around, that means the surface is just sitting there, getting bombarded by ultraviolet and gamma radiation that would destroy complex molecules and any ancient Martian biosignatures."

Compared to Earth's atmosphere, the Martian atmosphere is so thin its average pressure on the surface is a mere 0.6 percent of our planet's air pressure at sea level. Consequently, sediments on the Martian surface move more slowly than their Earthly counterparts.

The Martian dunes observed in this study ranged from 6 to 400 feet tall and were found to creep along at a fairly uniform average speed of two feet per Earth year. For comparison, some of the faster terrestrial sand dunes on Earth, such as those in North Africa, migrate at 100 feet per year.

"On Mars, there simply is not enough wind energy to move a substantial amount of material around on the surface," Chojnacki said. "It might take two years on Mars to see the same movement you'd typically see in a season on Earth."

Planetary geologists had been debating whether the sand dunes on the red planet were relics from a distant past, when the atmosphere was much thicker, or whether drifting sands still reshape the planet's face today, and if so, to what degree.

"We wanted to know: Is the movement of sand uniform across the planet, or is it enhanced in some regions over others?" Chojnacki said. "We measured the rate and volume at which dunes are moving on Mars."

The team used images taken by the HiRISE camera aboard NASA's Mars Reconnaissance Orbiter, which has been surveying Earth's next-door neighbor since 2006. HiRISE, which stands for High Resolution Imaging Science Experiment, is led by the UA's Lunar and Planetary Laboratory and has captured about three percent of the Martian surface in stunning detail.

The researchers mapped sand volumes, dune migration rates and heights for 54 dune fields, encompassing 495 individual dunes.

"This work could not have been done without HiRISE," said Chojnacki, who is a member of the HiRISE team. "The data did not come just from the images, but was derived through our photogrammetry lab that I co-manage with Sarah Sutton. We have a small army of undergraduate students who work part time and build these digital terrain models that provide fine-scale topography."

Across Mars, the survey found active, wind-shaped beds of sand and dust in structural fossae - craters, canyons, rifts and cracks - as well as volcanic remnants, polar basins and plains surrounding craters.

In the study's most surprising finding, the researchers discovered that the largest movements of sand in terms of volume and speed are restricted to three distinct regions: Syrtis Major, a dark spot larger than Arizona that sits directly west of the vast Isidis basin; Hellespontus Montes, a mountain range about two-thirds the length of the Cascades; and North Polar Erg, a sea of sand lapping around the north polar ice cap. All three areas are set apart from other parts of Mars by conditions not known to affect terrestrial dunes: stark transitions in topography and surface temperatures.

"Those are not factors you would find in terrestrial geology," Chojnacki said. "On Earth, the factors at work are different from Mars. For example, ground water near the surface or plants growing in the area retard dune sand movement."

On a smaller scale, basins filled with bright dust were found to have higher rates of sand movement, as well.

"A bright basin reflects the sunlight and heats up the air above much more quickly than the surrounding areas, where the ground is dark," Chojnacki said, "so the air will move up the basin toward the basin rim, driving the wind, and with it, the sand."

Understanding how sand and sediment move on Mars may help scientists plan future missions to regions that cannot easily be monitored and has implications for studying ancient, potentially habitable environments.

Research paper


Related Links
University of Arizona
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MARSDAILY
For InSight, dust cleanings will yield new science
Pasadena CA (JPL) May 07, 2019
The same winds that blanket Mars with dust can also blow that dust away. Catastrophic dust storms have the potential to end a mission, as with NASA's Opportunity rover. But far more often, passing winds cleared off the rover's solar panels and gave it an energy boost. Those dust clearings allowed Opportunity and its sister rover, Spirit, to survive for years beyond their 90-day expiration dates. Dust clearings are also expected for Mars' newest inhabitant, the InSight lander. Because of the spacec ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MARSDAILY
NASA Taps 11 American Companies to Advance Human Lunar Landers

Collision that formed the moon also brought Earth water

Astrobotic Signs Lunar Payload Agreement with Canadensys Aerospace

Giant impact caused difference between moon's hemispheres

MARSDAILY
China develops new-generation rockets for upcoming missions

China's satellite navigation industry sees rapid development

China's Yuanwang-7 departs for space monitoring missions

China's tracking ship Yuanwang-2 starts new mission after retirement

MARSDAILY
NASA Invites Public to Help Asteroid Mission Choose Sample Site

Bedbugs survived the impact event that wiped out the dinosaurs

'Extreme Crunch' Looming if No Limits Put on Space Mining 'Gold Rush'

First planetary defense technology demonstration to collide with asteroid in 2022

MARSDAILY
Neptune's moon Triton fosters rare icy union

Gas insulation could be protecting an ocean inside Pluto

NASA's New Horizons Team Publishes First Kuiper Belt Flyby Science Results

Brazilian scientists investigate dwarf planet's ring

MARSDAILY
Researchers find ice feature on Saturn's giant moon

Giant planets and big data: What deep learning reveals about Saturn's storms

Deep learning takes Saturn by storm

NASA's Cassini Reveals Surprises with Titan's Lakes

MARSDAILY
Airbus signs MOU with Hellenic Space Agency for future space cooperation

Arianespace to orbit Spanish SEOSat Ingenio Earth observation satellite

New research finds unprecedented weakening of Asian summer monsoon

3D Earth in the making

MARSDAILY
NASA Prepares for Future Moon Exploration with International Undersea Crew

Trump, NASA want another $1.6 billion to return America to the moon

NASA Selects Studies for Future Space Communications and Services

NASA Testing Method to Grow Bigger Plants in Space

MARSDAILY
New method to find small exoplanets

Three exocomets discovered around the star Beta Pictoris

New insights about carbon and ice could clarify inner workings of Earth, other planets

NASA Team Teaches Algorithms to Identify Life









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.