Odyssey marks 20 years of mapping Mars by Staff Writers Pasadena CA (JPL) Apr 08, 2021
NASA's 2001 Mars Odyssey spacecraft launched 20 years ago on April 7, making it the oldest spacecraft still working at the Red Planet. The orbiter, which takes its name from Arthur C. Clarke's classic sci-fi novel "2001: A Space Odyssey" (Clarke blessed its use before launch), was sent to map the composition of the Martian surface, providing a window to the past so scientists could piece together how the planet evolved. But it's done far more than that, uncovering troves of water ice, serving as a crucial communications link for other spacecraft, and helping to pave the way not just for safer landings but also future astronauts. Here's a partial list of Odyssey's many accomplishments.
Mapping Martian Ice "Before Odyssey, we didn't know where this water was stored on the planet," said Project Scientist Jeffrey Plaut of NASA's Jet Propulsion Laboratory in Southern California, which leads the Odyssey mission. "We detected it for the first time from orbit and later confirmed it was there using the Phoenix lander." Stores of water ice are also needed to help astronauts survive on Mars and to provide fuel for their spacecraft. (In fact, astronauts were the focus of an instrument aboard Odyssey that measured how much space radiation they would have to contend with before it stopped working in 2003.) The orbiter finds the water ice using its gamma-ray spectrometer (GRS) detector, which has proven to be a capable hunter of near-surface hydrogen - a proxy for water ice. The GRS measures the amount of different elements on the Martian surface and also serves as a node in NASA's interplanetary gamma-ray burst (GRB) detection network, which identifies source locations of GRB's for follow-up astronomical observations.
What Mars Is Made Of The net effect of two decades' worth of all that mapping? Scientists haven't just used the data to map valley networks and craters, they've also been able to spot sandstone, iron-rich rocks, salts, and more - findings that help lend deeper insight to Mars' story. "It's hard to overstate how the THEMIS global map has filled gaps in our knowledge," said Laura Kerber of JPL, Odyssey's deputy project scientist.
Safer Landings
Routine Calls Home "When the twin rovers landed, the success of relaying data using UHF frequency was a gamechanger," said Chris Potts of JPL, Odyssey's mission manager. Each day, the rovers could go somewhere new and send fresh images back to Earth. Through a relay like Odyssey, scientists got more data sooner, while the public got more Mars images to be excited over. Odyssey has supported over 18,000 relay sessions. These days, it shares the communications task with NASA's Mars Reconnaissance Orbiter and MAVEN, along with the ESA (European Space Agency) Trace Gas Orbiter.
Candy-Colored Moons Future missions, like the Japanese Space Agency's Martian Moons eXploration (MMX) spacecraft, will seek to land on these moons. In the distant future, missions might even create bases on them for astronauts. And if they do, they'll rely on data from an orbiter that began its odyssey at the start of the millennium. THEMIS was built and is operated by Arizona State University in Tempe. Odyssey's Gamma Ray Spectrometer was provided by the University of Arizona, Tucson, Los Alamos National Laboratory, and the Russian Space Research Institute. The prime contractor for the Odyssey project, Lockheed Martin Space in Denver, developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of Caltech in Pasadena.
Mars Odyssey Observes Martian Moons Pasadena CA (JPL) Feb 26, 2018 Phobos and Deimos, the moons of Mars, are seen in this movie put together from 19 images taken by the Mars Odyssey orbiter's Thermal Emission Imaging System, or THEMIS, camera. The images were taken in visible-wavelength light. THEMIS also recorded thermal-infrared imagery in the same scan. The apparent motion is due to progression of the camera's pointing during the 17-second span of the February 15, 2018, observation, not from motion of the two moons. This was the second observation ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |