Mars Exploration News
ROCKET SCIENCE
Nuclear rockets could travel to Mars in half the time
illustration only
Nuclear rockets could travel to Mars in half the time
by Dan Kotlyar | Associate Prof Nuclear and Radiological Engineering, Georgia Tech
Atlanta GA (SPX) Oct 04, 2024

NASA plans to send crewed missions to Mars over the next decade - but the 140 million-mile (225 million-kilometer) journey to the red planet could take several months to years round trip.

This relatively long transit time is a result of the use of traditional chemical rocket fuel. An alternative technology to the chemically propelled rockets the agency develops now is called nuclear thermal propulsion, which uses nuclear fission and could one day power a rocket that makes the trip in just half the time.

Nuclear fission involves harvesting the incredible amount of energy released when an atom is split by a neutron. This reaction is known as a fission reaction. Fission technology is well established in power generation and nuclear-powered submarines, and its application to drive or power a rocket could one day give NASA a faster, more powerful alternative to chemically driven rockets.

NASA and the Defense Advanced Research Projects Agency are jointly developing NTP technology. They plan to deploy and demonstrate the capabilities of a prototype system in space in 2027 - potentially making it one of the first of its kind to be built and operated by the U.S.

Nuclear thermal propulsion could also one day power maneuverable space platforms that would protect American satellites in and beyond Earth's orbit. But the technology is still in development.

I am an associate professor of nuclear engineering at the Georgia Institute of Technology whose research group builds models and simulations to improve and optimize designs for nuclear thermal propulsion systems. My hope and passion is to assist in designing the nuclear thermal propulsion engine that will take a crewed mission to Mars.

Nuclear versus chemical propulsion
Conventional chemical propulsion systems use a chemical reaction involving a light propellant, such as hydrogen, and an oxidizer. When mixed together, these two ignite, which results in propellant exiting the nozzle very quickly to propel the rocket.

These systems do not require any sort of ignition system, so they're reliable. But these rockets must carry oxygen with them into space, which can weigh them down. Unlike chemical propulsion systems, nuclear thermal propulsion systems rely on nuclear fission reactions to heat the propellant that is then expelled from the nozzle to create the driving force or thrust.

In many fission reactions, researchers send a neutron toward a lighter isotope of uranium, uranium-235. The uranium absorbs the neutron, creating uranium-236. The uranium-236 then splits into two fragments - the fission products - and the reaction emits some assorted particles.

More than 400 nuclear power reactors in operation around the world currently use nuclear fission technology. The majority of these nuclear power reactors in operation are light water reactors. These fission reactors use water to slow down the neutrons and to absorb and transfer heat. The water can create steam directly in the core or in a steam generator, which drives a turbine to produce electricity.

Nuclear thermal propulsion systems operate in a similar way, but they use a different nuclear fuel that has more uranium-235. They also operate at a much higher temperature, which makes them extremely powerful and compact. Nuclear thermal propulsion systems have about 10 times more power density than a traditional light water reactor.

Nuclear propulsion could have a leg up on chemical propulsion for a few reasons.

Nuclear propulsion would expel propellant from the engine's nozzle very quickly, generating high thrust. This high thrust allows the rocket to accelerate faster.

These systems also have a high specific impulse. Specific impulse measures how efficiently the propellant is used to generate thrust. Nuclear thermal propulsion systems have roughly twice the specific impulse of chemical rockets, which means they could cut the travel time by a factor of 2.

Nuclear thermal propulsion history
For decades, the U.S. government has funded the development of nuclear thermal propulsion technology. Between 1955 and 1973, programs at NASA, General Electric and Argonne National Laboratories produced and ground-tested 20 nuclear thermal propulsion engines.

But these pre-1973 designs relied on highly enriched uranium fuel. This fuel is no longer used because of its proliferation dangers, or dangers that have to do with the spread of nuclear material and technology.

The Global Threat Reduction Initiative, launched by the Department of Energy and National Nuclear Security Administration, aims to convert many of the research reactors employing highly enriched uranium fuel to high-assay, low-enriched uranium, or HALEU, fuel.

High-assay, low- enriched uranium fuel has less material capable of undergoing a fission reaction, compared with highly enriched uranium fuel. So, the rockets needs to have more HALEU fuel loaded on, which makes the engine heavier. To solve this issue, researchers are looking into special materials that would use fuel more efficiently in these reactors.

NASA and the DARPA's Demonstration Rocket for Agile Cislunar Operations, or DRACO, program intends to use this high-assay, low-enriched uranium fuel in its nuclear thermal propulsion engine. The program plans to launch its rocket in 2027.

As part of the DRACO program, the aerospace company Lockheed Martin has partnered with BWX Technologies to develop the reactor and fuel designs.

The nuclear thermal propulsion engines in development by these groups will need to comply with specific performance and safety standards. They'll need to have a core that can operate for the duration of the mission and perform the necessary maneuvers for a fast trip to Mars.

Ideally, the engine should be able to produce high specific impulse, while also satisfying the high thrust and low engine mass requirements.

Ongoing research
Before engineers can design an engine that satisfies all these standards, they need to start with models and simulations. These models help researchers, such as those in my group, understand how the engine would handle starting up and shutting down. These are operations that require quick, massive temperature and pressure changes.

The nuclear thermal propulsion engine will differ from all existing fission power systems, so engineers will need to build software tools that work with this new engine.

My group designs and analyzes nuclear thermal propulsion reactors using models. We model these complex reactor systems to see how things such as temperature changes may affect the reactor and the rocket's safety. But simulating these effects can take a lot of expensive computing power.

We've been working to develop new computational tools that model how these reactors act while they're starting up and operated without using as much computing power.

My colleagues and I hope this research can one day help develop models that could autonomously control the rocket.

Related Links
Nuclear and Radiological Engineering, Georgia Institute of Technology
Rocket Science News at Space-Travel.Com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
ROCKET SCIENCE
Young Student Explores Future Potential of Radioisotope Power Systems
Redmond, Washington (SPX) May 29, 2024
Power to Explore is a NASA essay writing competition organized by Future Engineers. It invites K-12 students to envision an RPS-powered space mission to a "dark, dusty, or distant" destination. In 250 words or less, we were asked to describe: + the mission destination and goals br> + the importance of radioisotope power systems in the mission br> + our unique "power" that will help ensure mission success. I've been participating in this competition for 3 years now, allowing me to fur ... read more

ROCKET SCIENCE
Unveiling charging and particle behavior of Chang'e-5 Lunar samples in electric field

Europe en route for Moon with new simulator, says astronaut Pesquet

Chinese scientists analyze Lunar Farside samples collected by Chang'e-6

Sentinel-2C satellite captures detailed lunar image during calibration

ROCKET SCIENCE
Xi emphasizes China's drive to lead in space exploration

China launches Yaogan 43B remote-sensing satellites from Xichang

Shenzhou-18 Crew Tests Fire Alarms and Conducts Medical Procedures in Space

Astronauts on Tiangong Space Station Complete Fire Safety Drill

ROCKET SCIENCE
Asteroid Ceres is a former ocean world that slowly formed into a giant, murky icy orb

Asteroid Ryugu's formation region may be closer than previously thought

OSIRIS-REx, 1 year later

Hera mission to unlock the secrets of Dimorphos asteroid

ROCKET SCIENCE
Technicians prep Europa Clipper for propellant loading

Volcanoes may help reveal interior heat on Jupiter moon

JunoCam identifies new volcanic feature on Io

Mystery of Trans-Neptunian Orbits Solved by Stellar Flyby

ROCKET SCIENCE
New analysis of Cassini data yields insights into Titan's seas

ROCKET SCIENCE
Hydrosat secures new NOAA grant to advance climate monitoring efforts

Most tropical thunderstorms emit gamma radiation

ICEYE unveils Dwell Precise mode with enhanced 25 cm resolution

Supreme Court lets stand rules to curb mercury, methane emissions

ROCKET SCIENCE
Rutgers awarded $607,000 USDA grant to pioneer electroponics technology

SpaceX Crew Dragon that will take Starliner astronauts home docks at ISS

SpaceX launches mission to return stranded astronauts

ISS Crew-9 will conduct research into genetics, cardiac health, and space farming

ROCKET SCIENCE
Microbes discovered thriving in 2-billion-year-old South African rock

Exoplanet map reveals Neptunian Ridge separating planetary regions

This rocky planet around a white dwarf resembles Earth - 8 billion years from now

Astronomers catch a glimpse of a uniquely inflated and asymmetric exoplanet

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.