Mars Exploration News  
MARSDAILY
NASA's Perseverance pays off back home
by Mike DiCicco for NASA Spinoff
Greenbelt MD (SPX) Feb 04, 2021

NASA has been exploring Mars since the 1960s, pushing the frontier of innovation to get to the red planet and discover its secrets. This new technology has often found other uses here on Earth as well. Infographic here

A laser-light sensor that can identify bacteria in a wound may sound far-fetched, but it's already becoming a reality, thanks in part to NASA's Mars Exploration Program. The technology is going to Mars for the first time on Perseverance, which will touch down on the Red Planet in February, but it's already detecting trace contaminants in pharmaceutical manufacturing, wastewater treatment, and other important operations on Earth.

That's not the only technology headed to Mars that's already paying dividends on the ground. Here on Earth, these innovations are also improving circuit board manufacturing and even led to a special drill bit design for geologists.

Giving Geologists a Break
Honeybee Robotics has been working on robotic missions to Mars and other planetary bodies since the 1990s, including a number of projects funded by Small Business Innovation Research (SBIR) contracts from NASA's Jet Propulsion Laboratory in Southern California. One of the key contributions to come from that work has been sample collection technology, including a drill bit for extracting rock cores. Half a dozen coring bits developed from research that started more than 20 years ago are now in space for the first time, ready for use in the rover's turret, or "hand," at the end of its robotic arm.

On Earth, after drilling a core with a hollow bit, a geologist usually uses a screwdriver or other tool to break the sample off and pull it out. This can result in a fragmented or even contaminated sample. A robot required something different.

New York-based Honeybee came up with a breakoff tube nested within a coring bit. After the core has been drilled, the breakoff tube rotates relative to the bit, shifting its central axis and snapping off the core. Unlike other breakoff methods, such as pinching the base of the core, the breakoff tube applies pressure along the length of the sample, reducing the risk of fragmentation.

Honeybee has supplied grinders, scoops, and other sampling systems that flew on previous Mars missions. This is the first time the company's coring bit technology is going to Mars, because it's the first time NASA has planned a future mission to bring samples of the Martian surface back to Earth. Perseverance will collect and package those samples.

"It's the key part of the sample return mission," said Keith Rosette, who managed the rover's sampling and caching system for JPL. "You truly can't collect a sample on Mars if you don't have a drill bit that can retrieve it."

While getting a sample return vehicle home from Mars will pose a host of challenges, it will let researchers do virtually unlimited testing with a wide array of instruments, Rosette said. "Rather than trying to bring all those instruments to Mars, it's less challenging and even more valuable to bring samples back."

Meanwhile, Honeybee has commercialized its patented breakoff bits in coring toolkits for geologists on Earth. The bits can be used with a standard drill, making the technology easy and affordable, said Kris Zacny, Honeybee vice president and director of exploration technology.

Honeybee has also been in talks with companies interested in using the bits for nuclear disaster remediation where it is too dangerous to send in human investigators, Zacny said. "If there are concrete tanks that are leaking, for example, then robots can go in and take samples to check radiation levels."

The technology was invented by Honeybee's late Chief Engineer Tom Myrick. "Tom would have been extremely proud that his invention made a difference to planetary missions," said Zacny.

Home Videos from Mars
Collecting samples for return to Earth isn't the only first that engineers have planned for Perseverance. For the first time, NASA has built a system that could send back high-quality video of a rover's dramatic entry and landing sequence.

While the Curiosity rover sent back a series of compressed images showing the Martian surface during descent, Perseverance's entry, descent, and landing package includes six high-definition cameras and a microphone that aims to capture all the drama of the "seven minutes of terror" between hitting the outer atmosphere and touching down. In addition to watching the planet's surface, the cameras are positioned to watch the parachutes unfold and also to look back at the descent stage and down at the rover as the two separate.

The camera components are off-the-shelf models, but the circuit board that manages their interface and power was designed by JPL. It was then built by San Francisco-based Tempo Automation. Founded in 2013, just after NASA announced the Mars 2020 mission, Tempo used the work to improve its manufacturing processes.

As its name suggests, Tempo Automation's focus is rapid, automated production of printed circuit boards, even in small batches. One set of tools the company offers to that end is the process for making every component "traceable," to keep track of who touched it and what was done to it at each point in the board production process, as well as which component lot the piece came from. This information makes it easier to zero in on the cause of a problem and see what other boards might have been affected, said Tempo cofounder Shashank Samala.

To meet JPL's stringent documentation requirements, Tempo added X-ray images, ionic cleanliness data, and data from an automated optical inspection for every component, all of which is now part of the company's standard procedure.

A tool unique to Tempo is what it calls fabrication simulation - software that translates a computer-aided design (CAD) model into a photorealistic representation of what the final board will look like. A team was prototyping the tool when the JPL work began in early 2018, and that work helped them complete it, said Samala. It debuted the following year.

The simulation lets customers check their designs for any issues or flaws before production begins, he said. "A simple mistake can cost a lot of money and time."

While it was conceived to help customers finalize their designs, the company discovered that it was useful in-house as well. The manufacturing process can result in discrepancies between the original CAD model and the final product, Samala explained. The simulation "serves as a source of truth on the factory floor, to communicate the designer's intent. The first thing we look at is the simulation."

He said delivering a product that met NASA standards has helped the company get into several other space systems, including satellites and rockets.

Meanwhile, Chris Basset, who designed the circuit board at JPL, looks forward to the moment the camera footage is beamed back from Mars after Perseverance's landing Feb. 18, 2021. "This is so far outside of what we usually do that it's super-exciting," he said. "I can't wait to see those images."

Ultraviolet Lasers Scan for Chemical Clues
Another technology whose roots reach far back into NASA's Mars Exploration Program is also flying for the first time on Perseverance and has many potential applications here on Earth.

When two longtime colleagues founded Photon Systems in 1997, research showed incredible promise for spectrometers - devices that use light to determine a sample's composition - operating at deep-ultraviolet (UV) wavelengths. These had the potential to identify a bacteria or detect even the slightest chemical traces. But sources for light in the 220- to 250-nanometer range were too large, heavy, and sensitive to environmental interference, and had many other issues.

William Hug and Ray Reid set out to develop a miniature, lightweight, rugged deep-UV laser source for spectroscopy in the field. Their first outside investment came in 1998 from a pair of SBIR contracts with JPL, which was interested in a spectrometer that could detect nucleic and amino acids, organic materials that are foundational to all known life. Since then, the Covina, California-based company has received a number of NASA SBIRs, mostly with JPL, as well as funding from NASA programs aimed at developing instruments for planetary and astrobiology science.

Now the space agency will get the first big returns on its long investment in the technology: Perseverance is equipped with the Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) instrument, which uses a Photon Systems laser to spot previously invisible clues in its search for signs of past life on Mars.

While the team doesn't expect to find bacteria on Mars, organics that exist in the near surface can be identified using SHERLOC. On Earth, the same technology can be used to identify organics for a variety of other purposes.

Deep-UV photons interact strongly with many materials, especially ones containing organic molecules. This results in higher detection sensitivity and greater accuracy when compared with infrared or even visible-light laser sources.

Deep-UV spectroscopy has been done in research labs, but Hug and Reid came up with a construction that was far smaller, simpler, and cheaper to build than any existing alternative. "Deep-UV lasers start at $100,000. That's why they're not used in industry," Hug said, noting that laboratory instruments using the technology might take up three laboratory tables and take a month to set up.

One major challenge has been the level of perfection the technology requires. The same sensitivities that enable tiny, high-energy wavelengths to detect even a virus make them vulnerable to the slightest defects. A microscopic imperfection in a lens or other surface can disrupt or scatter them, and Hug said it has taken advances across multiple industries to meet the necessary standards.

Photon Systems focuses on two types of spectroscopy where deep-UV laser sources provide major advantages over longstanding spectrometer technology, and SHERLOC will use both. Fluorescence spectroscopy observes the light that most organic and many inorganic materials emit when excited by certain ultraviolet wavelengths, just like detergent glowing under a black light. Each emits a distinct spectral "fingerprint."

Raman spectroscopy, on the other hand, observes the light that a molecule scatters, some of which will shift to different wavelengths due to interaction with molecular bond vibrations within the sample. These shifts in wavelength can be used to identify the materials in a sample. The higher-energy photons of UV light elicit a much stronger Raman scattering signal from organic molecules than lower-frequency light. And because deep-UV light isn't present in natural fluorescence or in sunlight, using these very short wavelengths eliminates sources of interference.

In recent years, the company has started developing the technology into products, including handheld sensors and devices that monitor personal exposure to contaminants, as well as lab equipment. Their biggest markets now are in the pharmaceutical, food processing, and wastewater treatment industries, said Hug. Deep UV can identify and measure certain compounds at much lower concentrations than any other method, offering unprecedented precision in quality control, whether measuring the active ingredients in pharmaceuticals or ensuring the cleanliness of machinery and facilities.

In wastewater treatment, the technology can identify and measure contaminants, letting the operator tailor the treatment process and save on power for ozone infusion and aeration. "For a small wastewater treatment plant, the whole system pays for itself in less than a month," Hug said.

An application the military has invested in is identifying bacteria and viruses. Figuring out which bacteria are present in a wound, for example, would help pinpoint the right antibiotic to treat it, rather than using broad-spectrum antibiotics that risk causing drug resistance.

And rapid, affordable deep-UV spectroscopy holds promise for medical research, from diagnostics to identifying proteins, peptides, and other biological material.

"NASA has been a constant companion in our journey to date, and the laser is only part of the story," said Hug. "It's also the deep-UV Raman and fluorescence instruments we built for NASA and the Department of Defense over the years that are now providing breakthroughs for pharma, wastewater, and water quality in general, and now clinical testing for viruses."

On Mars, SHERLOC will look for organic materials and analyze the minerals surrounding any possible signs of life so researchers can understand their context, said Luther Beegle, principal investigator for SHERLOC at JPL. This will provide more details about the history of Mars and also help to identify samples for return to Earth. The instrument, which also includes a camera capable of microscopic imaging, will be able to map a rock's mineral and organic composition in high detail, providing lots of important data.

"We're going to make a brand-spanking-new measurement on Mars," Beegle said. "This is something that's never even been attempted before. We think we're really going to move the needle on Mars science and find some great samples to bring back."

NASA has a long history of transferring technology to the private sector. The agency's Spinoff publication profiles NASA technologies that have transformed into commercial products and services, demonstrating the broader benefits of America's investment in its space program. Spinoff is a publication of the Technology Transfer program in NASA's Space Technology Mission Directorate.


Related Links
Perseverance at JPL
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MARSDAILY
NASA's Perseverance Rover 22 days from Mars landing
Pasadena CA (JPL) Jan 28, 2021
NASA's Mars 2020 Perseverance rover mission is just 22 days from landing on the surface of Mars. The spacecraft has about 25.6 million miles (41.2M km) remaining in its 292.5-million-mile (470.8M km) journey and is currently closing that distance at 1.6 miles per second (2.5 kilometers per second). Once at the top of the Red Planet's atmosphere, an action-packed seven minutes of descent awaits - complete with temperatures equivalent to the surface of the Sun, a supersonic parachute inflation, and ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MARSDAILY
On nights before a full moon, people go to bed later and sleep less

Airbus studies "Moon Cruiser" concept for ESA's cis-lunar transfer vehicle

Welding underway on Orion indended for landing astronauts on the Moon

NASA's Artemis Base Camp on the Moon will need light, water, elevation

MARSDAILY
Three generations dedicated to space program

China's space station core module, cargo craft pass factory review

China's space tracking ship completes satellite launch monitoring

Key modules for China's next space station ready for launch

MARSDAILY
OSIRIS-REx mission set for May departure from Bennu back to Earth

Oldest carbonates in the solar system

Why do some regions on the dwarf planet Ceres appear blue

Remote sensing data sheds light on when and how asteroid Ryugu lost its water

MARSDAILY
Peering at the Surface of a Nearby Moon

A Hot Spot on Jupiter

The 15th Anniversary of New Horizons Leaving Earth

Juno mission expands into the future

MARSDAILY
Saturn's Tilt Caused By Its Moons

Astronomers estimate Titan's largest sea is 1,000 feet deep

SwRI models point to a potentially diverse metabolic menu at Enceladus

MARSDAILY
Low-cost high resolution nighttime light data

LiveEO performs satellite-based vegetation risk analysis of entire US power grid

US must unify atmospheric biology research or risk national security, scientists say

Waldrop leads $75M NASA mission to investigate Earth's atmosphere

MARSDAILY
Artificial intelligence behind 21st Century spaceflight

NASA completes spacewalk to finish power system upgrades

NASA will pay $500,000 for good ideas on food production in space

Out-of-this-world wine back in Bordeaux after space station trip

MARSDAILY
First six-star system where all six stars undergo eclipses

TESS discovers four exoplanets orbiting a nearby sun-like star

Peering inside the birthplaces of planets orbiting the smallest stars

Could game theory help discover intelligent alien life









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.