Mars Exploration News  
MARSDAILY
NASA's Perseverance Rover will carry first spacesuit materials to Mars
by Staff Writers
Pasadena CA (JPL) Jul 29, 2020

This graphic shows an illustration of a prototype astronaut suit, left, along with suit samples included in the calibration target, lower right, belonging to the SHERLOC instrument aboard the Perseverance rover. They'll be observed to see how they hold up in the intense radiation of the Martian surface. Credit: NASA

NASA is preparing to send the first woman and next man to the Moon, part of a larger strategy to send the first astronauts to the surface of Mars. But before they get there, they'll be faced with a critical question: What should they wear on Mars, where the thin atmosphere allows more radiation from the Sun and cosmic rays to reach the ground?

Amy Ross is looking for answers. An advanced spacesuit designer at NASA's Johnson Space Center in Houston, she's developing new suits for the Moon and Mars. So Ross is eagerly awaiting this summer's launch of the Perseverance Mars rover, which will carry the first samples of spacesuit material ever sent to the Red Planet.

While the rover explores Jezero Crater, collecting rock and soil samples for future return to Earth, five small pieces of spacesuit material will be studied by an instrument aboard Perseverance called SHERLOC (Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals).

The materials, including a piece of helmet visor, are embedded alongside a fragment of a Martian meteorite in SHERLOC's calibration target. That's what scientists use to make sure an instrument's settings are correct, comparing readings on Mars to base-level readings they got on Earth.

In a Q&A, spacesuit designer Amy Ross explains how five samples, including a piece of helmet visor, will be tested aboard the rover, which is targeting a July 30 launch.

Read on as Ross shares insights into the materials chosen and the differences between suits designed for the Moon and those for Mars. More information about SHERLOC and the rover's science can be found here.

Why were these particular materials on SHERLOC's calibration target selected?

Ross: The materials we're poking at the most are meant to be on the outer layer of a suit, since these will be exposed to the most radiation. There's ortho-fabric, something we have a lot of experience using on the outside of spacesuits. That's three materials in one: It includes Nomex, a flame-resistant material found in firefighter outfits; Gore-Tex, which is waterproof but breathable; and Kevlar, which has been used in bulletproof vests.

We are also testing a sample of Vectran on its own, which we currently use for the palms of spacesuit gloves. It's cut-resistant, which is useful on the International Space Station: Micrometeoroids strike handrails outside the station, creating pits with sharp edges that can cut gloves.

We included a sample of Teflon, which we've used in spacesuits for a long time as part of astronaut glove gauntlets and the backs of gloves. Just like a nonstick pan, it's slippery, and it's harder to catch and tear a fabric if it's slick. We also included a sample of Teflon with a dust-resistant coating.

Finally, there's a piece of polycarbonate, which we use for helmet bubbles and visors because it helps reduce ultraviolet light. A nice thing about it is it doesn't shatter. If impacted, it bends rather than breaks and still has good optical properties.

How will SHERLOC check the samples?

Ross: On Mars, radiation will break down the chemical composition of the materials, weakening their tensile strength. We want to figure out how long these materials will last. Do we need to develop new materials, or will these hang in there?

SHERLOC can get the spectra, or composition, of rocks the mission's scientists want to study. It can do the same thing for these spacesuit materials. We've already tested them on Earth, bathing samples in radiation and then analyzing their spectra. The results of those tests, conducted in ultraviolet vacuum chambers at NASA's Marshall Space Flight Center, will be compared to what we see on Mars.

Will Martian dust be a challenge?

Ross: Sure, it's an engineering challenge, but there's no reason we can't design things to operate in dust. We're already developing things like seals that keep dust out of our bearings. Spacesuits have bearings at the shoulders, wrists, hip, upper thighs, and ankles. They all give an astronaut mobility for walking, kneeling, and other movements you'd need to get up close to rocks or maintain a habitat.

Remember, our suits inflate to over 4 pounds per square inch of pressure. That's not a crazy amount of pressure, but it's pretty stiff. When you put a human inside a balloon and ask them to move, they'll have trouble. It's as tight as the head of a drum. So we need to seal off the bearings so dust doesn't gunk them up.

We are looking for other ways to protect the suit from Martian dust over a long-duration mission. We know that a coated or film material will be better than a woven material that has space between the woven yarns. The two Teflon samples let us look at that as well as the performance of the dust-resistant coating.

How much would spacesuit design differ between the space station, the Moon, and Mars?

Ross: Spacesuit design depends on where you're going and what you're doing. The ISS suit is designed specifically for microgravity. If you go on a spacewalk, you're not really walking; you use your hands everywhere. Your lower torso is just used as a stable platform for your upper body. The suit is also exposed to two environmental sources of degradation: solar radiation and atomic oxygen. Atomic oxygen is different from the oxygen we breathe. It's very reactive and can degrade spacesuit materials.

The Moon doesn't have the atomic oxygen problem but is worse than Mars in terms of radiation. You're pretty close to the Sun and have no atmosphere to scatter the ultraviolet radiation like you do on Mars. The Moon is a big testbed for the Artemis program. The environments of the Moon and Mars aren't exactly the same, but the durability challenges - materials exposed over long periods of time at low pressures in a dusty environment - are similar.

On Mars, you're farther from the Sun, and you have at least a little atmosphere to scatter the UV. But that's when the duration of exposure starts to get you. You have to plan on being exposed on the surface most of the time. Mars spacesuits will be more like ones we use for the Moon and less like those for the ISS. I'm trying to make the Moon suit as much like the Mars suit as possible.


Related Links
Mars 2020 Perseverance Rover
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MARSDAILY
Human exploration of Mars is on the horizon
Washington DC (SPX) Jul 21, 2020
During an event with the Space Foundation, I was excited to be part of a discussion on how our upcoming Mars 2020 Perseverance launch and the Artemis program are critical to opening the door to smarter, safer human missions to Mars. Throughout our history, people have always explored the world around them to discover the unknown, find new resources, expand their presence, and improve their existence. This primordial urge continues within us today, driving humanity to overcome what we once thought ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MARSDAILY
Russian Cosmonauts Could Be Going to the Moon Without a Super-Heavy Launch Vehicle

Study reveals composition of gel-like lunar substance

Russia's Trailblazing Lunar Lander Mission to be Launch-Tested With US Equipment

Solar power investigation to launch on lunar lander

MARSDAILY
China marching to Mars for humanity's better shared future

From the Moon to Mars: China's long march in space

Tianwen 1 probe to soon blast off for Mars

China's newest carrier rocket fails in debut mission

MARSDAILY
An origin story for a family of oddball meteorites

Carbon found in comet ATLAS helps reveal ages of other comets

Earth, moon were bombarded by asteroid shower 800 million years ago

A population of asteroids of interstellar origin inhabits the Solar System

MARSDAILY
NASA Juno takes first images of Ganymede's North Pole

Subaru Telescope and New Horizons explore the outer Solar System

The collective power of the solar system's dark, icy bodies

Ocean in Jupiter's moon Europa "could be habitable"

MARSDAILY
Evidence for Volcanic Craters on Saturn's Moon Titan

Saturn's Moon Titan drifting away faster than previously thought

Discovered a multilayer haze system on Saturn's Hexagon

MARSDAILY
Reduction in commercial flights due to COVID-19 leading to less accurate weather forecasts

Decadal predictability of North Atlantic blocking and the NAO

Earth's vibrations quieted during COVID-19 lockdowns

A Walk Through the Rainbow with PACE

MARSDAILY
Top 10 things to know for NASA's SpaceX Demo-2 return

Russian Progress resupply cargo spacecraft docks with ISS

Duckweed is an incredible, radiation-fighting astronaut food

Spacewalk on Tuesday will conclude space station power upgrade

MARSDAILY
Exoplanet rediscovery is step toward finding habitable planets

First ever image of a multi-planet system around a sun-like star captured by ESO telescope

Could mini-Neptunes be irradiated ocean planets

Astronomers track down 'lost' worlds spotted but unconfirmed by TESS survey









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.