NASA scientists leverage carbon-measuring instrument for Mars studies by Lori Keesey for GSFC News Greenbelt MD (SPX) Aug 07, 2020
Insights and technology gleaned from creating a carbon-measuring instrument for Earth climate studies is being leveraged to build another that would remotely profile, for the first time, water vapor up to nine miles above the Martian surface, along with wind speeds and minute particles suspended in the planet's atmosphere. Scientists Jim Abshire and Scott Guzewich, both at NASA's Goddard Space Flight Center in Greenbelt, Maryland, have won NASA technology-development funding to build and demonstrate a small prototype atmospheric lidar for a future lander on Mars, and possibly Titan, Saturn's largest moon and the only to have a dense atmosphere. Selected for further development by the agency's Planetary Instrument Concepts for the Advancement of Solar System Observations (PICASSO) program, the concept traces its heritage to other similar-type instruments originally conceived through Goddard's Internal Research and Development (IRAD) program. Another IRAD-supported technology, a Raman mass spectrometer, also received PICASSO funding.
Understanding the Boundary Layer This layer is important because it controls the transfer of heat, momentum, dust, and water and can reveal greater insights about the planet's modern climate, including the stability of its ice caps, how wind shapes the landscape, and how dust is lifted and transported. Furthermore, scientists can use this data to validate and improve general circulation models, Guzewich said. "From a human spaceflight perspective, this layer is also critical for operations," Abshire said. "This is the environment in which landed missions will operate." NASA has landed atmospheric lidars before, successfully measuring winds as well as aerosols, including dust and ice, but this particular instrument would provide the missing element - direct measurements of water vapor in vertical columns above the surface. "We're motivated by science questions," Guzewich said. "We want to measure water vapor and winds at the same time. The whole point is understanding water and how it's being moved around through the atmosphere. We know where the water is, we just don't know how it moves." To find out, the lidar would bounce a laser light tuned to 1911 nanometers - a specific wavelength in the near-infrared band ideal for detecting water vapor - into the sky and then analyze the reflected light or signal to learn more about the atmospheric dynamics occurring from the surface to nine miles above the surface. Equipped with a sesame seed-sized, already developed infrared detector, the instrument would be able to sense the returning signal at a single-photon level, providing unprecedented resolution.
IRAD Heritage However, he and his colleagues have vast experience developing atmospheric lidar instruments. For Earth science, they built the Co2 Sounder lidar tuned to 1572 nanometers, which is effective for measuring carbon dioxide in the atmosphere. The new lidar also traces its heritage to the Mars Lidar for Global Climate Measurements from Orbit, which Abshire envisioned as an on-orbit instrument to measure wind speeds. The challenge is producing an instrument that is robust, practical, yet small enough to fit onto a rover. "Our challenge is to show that we can do this. Fortunately, we can rely on the unique capabilities of Goddard, Abshire said. "We have great capabilities in lidar, space lasers, and detectors. There really is no other place that combines all this capability and expertise."
Raman-Mass Spectrometer With his PICASSO award, Grubisic said he and the RAMS team plan to demonstrate a hybrid instrument that would be capable of acquiring micron-level composition maps of organic molecules and mineral phases that exist in samples gathered on comets and asteroids as well as from samples acquired on the icy moons in the outer solar system, Such measurements would give scientists the necessary information to help them understand the origin of organic material in the solar system, the habitability of other planets, and the potential for life beyond Earth.
For more news about Goddard technology, go here
NASA's MAVEN observes Martian night sky pulsing in ultraviolet light Greenbelt MD (SPX) Aug 07, 2020 Vast areas of the Martian night sky pulse in ultraviolet light, according to images from NASA's MAVEN spacecraft. The results are being used to illuminate complex circulation patterns in the Martian atmosphere. The MAVEN team was surprised to find that the atmosphere pulsed exactly three times per night, and only during Mars' spring and fall. The new data also revealed unexpected waves and spirals over the winter poles, while also confirming the Mars Express spacecraft results that this nightglow ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |