Mars Exploration News  
MARSDAILY
NASA leverages proven technologies to build agency's first planetary wind lidar
by Staff Writers
Greenbelt MD (SPX) Feb 09, 2018

Some of the components of the MARLI instrument are shown here with the team developing the instrument. Front row (left to right): Daniel Cremons and Graham Allan; (back row, left to right): Mike Smith, Jim Abshire, Haris Riris, and Xiaoli Sun.

NASA scientists have found a way to adapt a handful of recently developed technologies to build a new instrument that could give them what they have yet to obtain: never-before-revealed details about the winds on Mars and ultimately Titan, Saturn's largest moon.

We pride ourselves in leveraging new technology," said Mike Smith, a planetary scientist at NASA's Goddard Space Flight Center in Greenbelt, Maryland. Smith is collaborating with Goddard remote-sensing scientist Jim Abshire to create an experimental or demonstration test model of MARLI, short for the MARs LIdar for global climate measurements from orbit.

"Why start from scratch when you can adapt recent technologies?" Smith said.

NASA's First Planetary Lidar

The experimental MARLI, which the team believes will be mature enough to propose for a future orbiter mission in a couple of years, could become NASA's first planetary wind lidar. Its chief job would be to profile the vertical distribution of atmospheric aerosols, including dust and ice particles, and directly measure wind velocities to determine how these conditions change over time, location, and season.

This information is vital to understanding everything from the transport of potential biomarkers, such as methane, to providing input for global circulation models of the atmosphere that, among other things, help determine safe and precise landing locations for spacecraft.

Although the team conceived MARLI as a potential next-generation instrument for probing Mars' thin atmosphere and advanced the concept through NASA's Planetary Instrument Concepts for the Advancement of Solar System Observations, or PICASSO, program, a modified version also could be used to investigate Titan, Abshire said. He and his team recently won additional research-and-development funding from NASA's Maturation of Instruments for Solar System Exploration, or MatISSE program, to further advance MARLI and make the necessary adjustments to enable Titan investigations.

"After 20-plus years of launching orbiters and rovers, we've learned a lot about environmental conditions on Mars, including temperatures and atmospheric gases," Smith continued. He added, however, that scientists have obtained very few direct measurements of the winds, which Mars rovers have clocked at 45 miles per hour or faster. And though Mars has a low-density atmosphere, the winds are often strong enough to completely enshroud the planet in dust.

"If we were going to write a list of the things we don't know, winds would top the list."

If scientists know little about Martian winds, they know even less about atmospheric aerosols and dynamics on Titan, which is the only moon to host a dense atmosphere and the only object - aside from Earth - to have stable bodies of liquid on the surface, Abshire added.

The Solution
MARLI could provide a solution, its developers believe. From its orbit around Mars or Titan, its beam would be pointed roughly 30 degrees off nadir (directly below the spacecraft). In that orientation, the instrument would operate much like Doppler radar, a kind of specialized radar that measures velocity.

It does this by bouncing a microwave signal off a desired target and analyzing how the object's motion alters the frequency of the returned signal. However, instead of radio or microwaves, MARLI would continuously pulse infrared light toward the surface with its onboard laser.

Due to the presence of dust and ice particles in the atmosphere, some light would scatter before it could reach the surface and some of that light would make its way back to MARLI's onboard telescope, which would gather the returning backscatter signals and direct them to the instrument's detectors.

The resulting data not only would reveal how fast the winds are blowing, but also the distribution of dust and ice in that part of the atmosphere. Such measurements around the globe would give scientists a three-dimensional view of the dust and wind structure on Mars and how it changes with time, location, and season.

"Our approach has a high likelihood of success. It leverages key laser and receiver technologies from previous space lidar missions, and other developments," including some that have mapped the surface features or topographies of Mars, Mercury, and the Moon, Abshire said.

"The hardest part is getting a ride to Mars," Smith added.

The Adaptation of Technologies and Measurement Approaches
MARLI's laser, to be built by the Herndon, Virginia-based Fibertek, Inc., is an adaptation of the device the company developed for the Goddard-developed Cloud Aerosol Transport System, or CATS.

Though originally conceived as an aircraft-based instrument, CATS developers modified the instrument and launched it to the International Space Station in 2015 where it gathered more accurate global profiles of Earth's clouds and atmospheric aerosols. After 33 months in orbit, the instrument ended operations in late 2017.

MARLI's telescope, furthermore, is an adaptation of the one used on the Mars Orbiter Laser Altimeter, an instrument that flew on the Mars Global Surveyor spacecraft, and its wind-measurement technique is similar to the one demonstrated by an airborne instrument called the Tropospheric Wind Lidar Technology Experiment, also known as TWiLiTE.

And its detector technology, created by team member Xiaoli Sun and his industry partner, the Dallas, Texas-based DRS Technologies, represents a new technology adapted for wind measurements. The detector is the world's first photon-counting detector sensitive to the mid-infrared wavelength band - a spectral sweet spot for several remote-sensing applications, including the detection of ice.

Coupled with a device that converts the returning signals into actual photon numbers, the detector is unique. Each sesame seed-sized detector registers each converted photon in the returning signal, giving it unprecedented sensitivity. In addition to being baselined for MARLI, the detector technology has found homes in two airborne laser instruments that Abshire and Haris Riris, another MARLI team member, designed to measure carbon dioxide and methane in Earth's atmosphere.

Because of this leverage, "MARLI is uniquely capable of answering these important science questions with a single instrument," Abshire said.

"This will allow us to better understand the things that are happening in the atmosphere, including the transport of dust and ice particles - the genesis of dust storms. Right now, these basic questions still remain."

For other Goddard technology news Related Links
Goddard Space Flight Center
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MARSDAILY
Dust storms linked to gas escape from Mars atmosphere
Pasadena CA (JPL) Jan 24, 2018
Some Mars experts are eager and optimistic for a dust storm this year to grow so grand it darkens skies around the entire Red Planet. This biggest type of phenomenon in the environment of modern Mars could be examined as never before possible, using the combination of spacecraft now at Mars. A study published this week based on observations by NASA's Mars Reconnaissance Orbiter (MRO) during the most recent Martian global dust storm - in 2007 - suggests such storms play a role in the ongoing proces ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MARSDAILY
New study sheds light on moon's slow retreat from frozen Earth

India Prepares For Second Lunar Mission with Chandrayaan-2

UCF Seeks New Way to Mine Moon for Water

Chinese volunteers spend 200 days on virtual 'moon base'

MARSDAILY
Chinese taikonauts maintain indomitable spirit in space exploration: senior officer

China launches first shared education satellite

China's first X-ray space telescope put into service after in-orbit tests

China's first successful lunar laser ranging accomplished

MARSDAILY
Two Small Asteroids Safely Pass Earth This Week

Seafloor data point to global volcanism after Chicxulub meteor strike

Evidence for a massive biomass burning event at the Younger Dryas Boundary

New research suggests toward end of Ice Age, human beings witnessed fires larger than dinosaur killers

MARSDAILY
New Horizons captures record-breaking images in the Kuiper Belt

Europa and Other Planetary Bodies May Have Extremely Low-Density Surfaces

JUICE ground control gets green light to start development

New Year 2019 offers new horizons at MU69 flyby

MARSDAILY
Titan topographic map unearths cookie-cutter holes in moon's surface

Cassini finds Titan has 'sea level' like Earth

Giant Storms Cause Palpitations in Saturn's Atmospheric Heartbeat

Electrical and Chemical Coupling Between Saturn and Its Ring

MARSDAILY
SSTL and 21AT announce new Earth Observation data contract

NASA Space Sensors to Address Key Earth Questions

Ozone at lower latitudes not recovering, despite ozone hole healing

Ozone layer declining over populated zones: study

MARSDAILY
NanoRacks adds Thales Alenia Space to team up on Commercial Space Station Airlock Module

ESA and Airbus sign partnership agreement for new ISS commercial payload platform Bartolomeo

All-in-one service for the Space Station

Marshall tech cleans your air, keeps your beer cold and helps with math

MARSDAILY
Are you rocky or are you gassy

UChicago astrophysicists settle cosmic debate on magnetism of planets and stars

Viruses are falling from the sky

What the TRAPPIST-1 Planets Could Look Like









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.