Subscribe free to our newsletters via your
. Mars Exploration News .




MARSDAILY
NASA Mars Orbiters See Clues to Possible Water Flows
by Staff Writers
Pasadena CA (JPL) Feb 13, 2014


Dark, seasonal flows emanate from bedrock exposures at Palikir Crater on Mars in this image from the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter. Image courtesy NASA/JPL-Caltech/Univ. of Arizona. For a larger version of this image please go here.

NASA spacecraft orbiting Mars have returned clues for understanding seasonal features that are the strongest indication of possible liquid water that may exist today on the Red Planet.

The features are dark, finger-like markings that advance down some Martian slopes when temperatures rise. The new clues include corresponding seasonal changes in iron minerals on the same slopes and a survey of ground temperatures and other traits at active sites. These support a suggestion that brines with an iron-mineral antifreeze, such as ferric sulfate, may flow seasonally, though there are still other possible explanations.

Researchers call these dark flows "recurring slope lineae." As a result, RSL has become one of the hottest acronyms at meetings of Mars scientists.

"We still don't have a smoking gun for existence of water in RSL, although we're not sure how this process would take place without water," said Lujendra Ojha, a graduate student at the Georgia Institute of Technology, Atlanta, and lead author of two new reports about these flows. He originally discovered them while an undergraduate at the University of Arizona, Tucson, three years ago, in images from the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter.

Ojha and Georgia Tech assistant professor James Wray more recently looked at 13 confirmed RSL sites using images from the same orbiter's Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument. They searched for minerals that RSL might leave in their wake as a way of understanding the nature of these features: water-related or not?

They didn't find any spectral signature tied to water or salts. But they did find distinct and consistent spectral signatures of ferric and ferrous minerals at most of the sites. These iron-bearing minerals were more abundant or featured distinct grain sizes in RSL-related materials as compared to non-RSL slopes. These results are in a paper published in the journal Geophysical Research Letters.

Ojha said, "Just like the RSL themselves, the strength of the spectral signatures varies according to the seasons. They're stronger when it's warmer and less significant when it's colder."

One possible explanation for these changes is a sorting of grain sizes, such as removal of fine dust from the surface, which could result from either a wet process or dry one. Two other possible explanations are an increase in the more-oxidized (ferric) component of the minerals, or an overall darkening due to moisture.

Either of these would point to water, even though no water was directly detected. The spectral observations might miss the presence of water, because the dark flows are much narrower than the area of ground sampled with each CRISM reading. Also, the orbital observations have been made only in afternoons and could miss morning moisture.

The leading hypothesis for these features is the flow of near-surface water, kept liquid by salts depressing the freezing point of pure water. "The flow of water, even briny water, anywhere on Mars today would be a major discovery, impacting our understanding of present climate change on Mars and possibly indicating potential habitats for life near the surface on modern Mars," said Mars Reconnaissance Orbiter Project Scientist Richard Zurek, of NASA's Jet Propulsion Laboratory, Pasadena, Calif.

In related research, reported in a paper to be published by the journal Icarus next month, the Georgia Tech scientists and colleagues at the University of Arizona; U.S. Geological Survey, Flagstaff, Ariz.; and Polish Academy of Sciences, Warsaw, used the Mars Reconnaissance Orbiter and NASA's Mars Odyssey orbiter to look for patterns in where and when the dark seasonal flows exist on Mars. Their results indicate that many sites with slopes, latitudes and temperatures matching known RSL sites do not have any evident RSL.

They hunted for areas that were ideal locations for RSL formation: areas near the southern mid-latitudes on rocky cliffs. They found 200, but barely any of them had RSL. "Only 13 of the 200 locations had confirmed RSL," said Ojha. "The fact that RSL occur in a few sites and not others indicates additional unknown factors such as availability of water or salts may play a crucial role in RSL formation."

They compared new observations with images from previous years, revealing that RSL are much more abundant some years than others.

"NASA likes to 'follow the water' in exploring the Red Planet, so we'd like to know in advance when and where it will appear," Wray said. "RSL have rekindled our hope of accessing modern water, but forecasting wet conditions remains a challenge."

The new research reports about recurring slope lineae are available here and here

.


Related Links
Mars exploration at NASA
Mars News and Information at MarsDaily.com
Lunar Dreams and more






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








MARSDAILY
Russia proposes water-hunting instrument for future Mars rover
Moscow (UPI) Feb 4, 2013
Russian scientists have proposed an instrument for an upcoming NASA Mars rover to search for underground water that could support life on the Red Planet. The instrument designed by Russia's Space Research Institute was one of 58 proposals submitted to NASA this month for inclusion on the agency's upcoming Mars 2020 rover. "On the surface everything looks the same, just layers of ... read more


MARSDAILY
Source of 'Moon Curse' Revealed by Eclipse

NASA bets on private companies to exploit moon's resources

Astrobotic Begins Testing at Masten Space Systems

NASA Extends Moon Exploring Satellite Mission

MARSDAILY
China's Jade Rabbit rover comes 'back to life'

Yutu Awakes

Moon plays trick on Jade Rabbit

Waiting for Yutu

MARSDAILY
Andrews Space Cargo Module Power Unit Provides Power For Payloads Bound For ISS

Russian Progress M-22M docks with ISS following fast rendezvous

Russian Resupply Spacecraft Begins Expedited Flight to Station

NASA Selects Physical Science Research Proposals for the ISS

MARSDAILY
Thanks America, New Horizons Ahead

Countdown to Pluto

A Busy Year Begins for New Horizons

MARSDAILY
NASA Spacecraft Get a 360-Degree View of Saturn's Auroras

Cassini's View of Weird and Wonderful Saturn

Clay-Like Minerals Found on Icy Crust of Europa

Cassini Spacecraft Obtains Best Views of Saturn Hexagon

MARSDAILY
Olympics: Eye in the sky give viewers dramatic new angle

NASA-USGS Landsat 8 Satellite Celebrates First Year of Success

Largest Flock of Earth-Imaging Satellites Launch into Orbit From ISS

Swarm heads for new heights

MARSDAILY
Hollande on Silicon Valley charm offensive

ORBITEC Supports NASA Kennedys Advanced Plant Habitat for ISS

Is it time to lift alcohol ban in space?

Tech products can turn uncool when they become too popular

MARSDAILY
Kepler Finds a Very Wobbly Planet

One planet, two stars: new research shows how circumbinary planets form

First Weather Map of Brown Dwarf

NASA-Sponsored 'Disk Detective' Lets Public Search for New Planetary Nurseries




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement