Mars Exploration News
MARSDAILY
Mystery of the Martian core solved
Analysis of Martian seismic data recorded by the InSight mission in combination with first-principles simulations of the seismic properties of liquid metal alloys have revealed that Mars's liquid iron core is surrounded by a 150-km thick molten silicate layer, as a consequence of which its core is smaller than previously proposed. The decrease in core radius implies a higher density than estimated earlier and is compatible with a metal core consisting of 9-15 wt% of light elements, chiefly S, C, O, and H.
Mystery of the Martian core solved
by by Barbara Vonarburg
Zurich, Switzerland (SPX) Oct 26, 2023

For four years, NASA's InSight lander recorded tremors on Mars with its seismometer. Researchers at ETH Zurich collected and analysed the data transmitted to Earth to determine the planet's internal structure. "Although the mission ended in December 2022, we've now discovered something very interesting," says Amir Khan, a Senior Scientist in the Department of Earth Sciences at ETH Zurich.

An analysis of recorded marsquakes, combined with computer simulations, paint a new picture of the planet's interior. Sandwiched between Mars's liquid iron alloy core and its solid silicate mantle lies a layer of liquid silicate (magma) about 150 kilometres thick. "Earth doesn't have a completely molten silicate layer like that," Khan says.

This finding, now published in the scientific journal Nature alongside a study led by Henri Samuel, Institut de Physique de Globe de Paris, that reaches a similar conclusion using complimentary methods, also provides new information on the size and composition of Mars' core, resolving a mystery that researchers have until now been unable to explain.

An analysis of the initially observed marsquakes had shown that the average density of the Martian core had to be significantly lower than that of pure liquid iron. The Earth's core, for example, consists of about 90 percent iron by weight. Light elements such as sulphur, carbon, oxygen, and hydrogen make up a combined total of around 10 percent by weight. Initial estimates of the density of the Martian core showed that it is comprised of a much larger share of light elements - around 20 percent by weight. "This represents a very large complement of light elements, bordering on the impossible. We have been wondering about this result ever since," says Dongyang Huang, a postdoctoral researcher in the Department of Earth Sciences at ETH Zurich.

Fewer light elements
The new observations show that the radius of the Martian core has decreased from the initially determined range of 1,800-1,850 kilometres to somewhere in the range of 1,650- 1,700 kilometres, which is about 50 percent of the radius of Mars. If the Martian core is smaller than previously thought but has the same mass, it follows that its density is greater and that it, therefore, contains fewer light elements.

According to the new calculations, the proportion of light elements dropped to between 9 and 14 percent by weight. "This means that the average density of the Martian core is still somewhat low, but no longer inexplicable in the context of typical planet formation scenarios," says Paolo Sossi, Assistant Professor in the Department of Earth Sciences at ETH Zurich and member of the National Centres of Competence in Research (NCCRs) PlanetS. The fact that the Martian core contains a significant amount of light elements indicates that it must have formed very early, possibly when the Sun was still surrounded by the nebula gas from which light elements could have accumulated in the Martian core.

The initial calculations were based on tremors that had occurred in close proximity to the InSight lander. However, in August and September 2021, the seismometer registered two quakes on the opposite side of Mars. One of them was caused by a meteorite impact. "These quakes produced seismic waves that traversed the core," explains Cecilia Duran, a doctoral student in the Department of Earth Sciences at ETH Zurich. "This allowed us to illuminate the core."

In the case of the earlier marsquakes, by contrast, the waves were reflected at the core-?mantle boundary, providing no information about the deepest interior of the Red Planet. As a result of these new observations, the researchers have now been able to determine the density and seismic wave speed of the fluid core up to a depth of about 1,000 kilometres.

Supercomputer simulations
To infer the composition of the material from such profiles, researchers usually compare the data with that of synthetic iron alloys containing different proportions of light elements (S, C, O, and H). In the lab, these alloys are exposed to high temperatures and pressures equivalent to those found in Mars's interior, allowing researchers to measure density and seismic wave speed directly. A

t the moment, however, most experiments are conducted at conditions prevailing in the Earth's interior and are, therefore, not immediately applicable to Mars. Consequently, the ETH Zurich researchers resorted to a different method. They computed the properties of a wide variety of alloys using quantum-?mechanical calculations, which they carried out at the Swiss National Supercomputing Centre (CSCS) in Lugano, Switzerland.

When the researchers compared the calculated profiles with their measurements based on the InSight seismic data, they encountered a problem. It turned out that no iron-?light element alloys simultaneously matched the data at both the top and centre of the Martian core. At the core-?mantle boundary, for example, the iron alloy would have had to contain much more carbon than in the core's interior.

"It took us a while to realise that the region we had previously considered to be the outer liquid iron core wasn't the core after all, but the deepest part of the mantle," explains Huang. In support of this, the researchers also found that the density and seismic wave speed measured and computed in the outermost 150 kilometres of the core were consistent with those of liquid silicates - the same material, in solid form, of which the Martian mantle is composed.

Further analysis of earlier marsquakes and additional computer simulations confirmed this result. It is only regrettable that dusty solar panels and the resulting lack of power made it impossible for the InSight lander to provide additional data that could have shed more light on the composition and structure of Mars's interior. "Yet, InSight was a very successful mission that provided us with a lot of new data and insights that will be analysed for years to come," Khan says.

Research Report:Geophysical evidence for an enriched molten silicate layer above Mars's core

Related Links
ETH Zurich
Mars News and Information at MarsDaily.com
Lunar Dreams and more

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
MARSDAILY
International team reveals source of largest ever Mars quake
Oxford UK (SPX) Oct 18, 2023
A global team of scientists have announced the results of an unprecedented collaboration to search for the source of the largest ever seismic event recorded on Mars. The study, led by the University of Oxford, rules out a meteorite impact, suggesting instead that the quake was the result of enormous tectonic forces within Mars' crust. The quake, which had a magnitude of 4.7 and caused vibrations to reverberate through the planet for at least six hours, was recorded by NASA's InSight lander on May ... read more

MARSDAILY
Texas A and M joins multimillion-dollar moon orbit tracking project

How could a piece of the Moon become a Near-Earth asteroid

The Moon is 40 million years older than previously thought

ACT's Thermal Management System will help VIPER Rover survive long lunar nights

MARSDAILY
China discloses tasks of Shenzhou-17 crewed space mission

Next-generation rocket for China's manned space missions on track

Final rehearsal for Shenzhou XVII flight completed

Chinese sci-fi fans over the moon at Chengdu Worldcon

MARSDAILY
UArizona researchers probe how a piece of the moon became a near-Earth asteroid

Hera asteroid mission goes on trial

Lucy preparing for its first asteroid flyby

Psyche's 3.6 billion kilometre journey to the centre of the Earth via it's namesake

MARSDAILY
How NASA is protecting Europa Clipper from space radiation

NASA's Webb Discovers New Feature in Jupiter's Atmosphere

Plot thickens in hunt for ninth planet

Large mound structures on Kuiper belt object Arrokoth may have common origin

MARSDAILY
Dragonfly tunnel visions

New Simulations Shed Light on Origins of Saturn's Rings and Icy Moons

Saturn images show a change of seasons as polar vortex fades

MARSDAILY
High-resolution atmospheric modeling gets a boost with next-gen GEOS-Chem software

QuickSounder Spacecraft contract awarded by NASA

MDA Selects Spacex to launch Chorus Constellation

Yaogan remote-sensing satellites launched into orbit

MARSDAILY
UK and Axiom sign agreement on plans for historic human spaceflight mission

CRS-29 mission flies research to the Space Station

India launches key test for manned orbital mission

NASA improves GIANT optical navigation technology for future missions

MARSDAILY
ET phone Dublin? Astrophysicists scan the Galaxy for signs of life

Exoplanet-informed research helps search for radio technosignatures

Webb detects tiny quartz crystals in clouds of hot gas giant

Extreme habitats: Microbial life in Old Faithful Geyser

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.