Mars Exploration News  
MARSDAILY
Martian dust storms churn up Earth-like clouds
by Staff Writers
Paris (ESA) Nov 16, 2022

stock image only

ESA's Mars Express has revealed that Mars churns up surprisingly Earth-like cloud patterns that are reminiscent of those in our planet's tropical regions.

Earth and Mars have vastly different atmospheres. The dry, cold atmosphere of Mars is composed almost entirely of carbon dioxide while Earth's is rich in nitrogen and oxygen. Its atmospheric density is less than one fiftieth of Earth's atmosphere - equivalent to the density found at about 35 km above Earth's surface.

Despite being wildly different, their cloud patterns have been found to be surprisingly Earth-like, pointing to similar formation processes.

A new study dives deeper into two dust storms that occurred near the martian North Pole in 2019. The storms were monitored during springtime at the North Pole, a time when local storms commonly brew around the receding ice cap.

Two cameras on board Mars Express - the Visual Monitoring Camera (VMC) and the High Resolution Stereo Camera (HRSC) - together with the MARCI camera on board NASA's Mars Reconnaissance Orbiter, imaged the storms from orbit.

The sequence of VMC images shows that the storms appear to grow and disappear in repeated cycles over a period of days, exhibiting common features and shapes. Spiral shapes are notably visible in the wider views of the HRSC images. The spirals are between 1000 and 2000 km in length, and their origin is the same as that of the extratropical cyclones observed in Earth's mid-latitudes and polar latitudes.

The images reveal a particular phenomenon on Mars. They show that the martian dust storms are made up of regularly spaced smaller cloud cells, arranged like grains or pebbles. The texture is also seen in clouds in Earth's atmosphere.

The familiar textures are formed by convection, whereby hot air rises because it is less dense than the cooler air around it. The type of convection observed here is called closed-cell convection, when air rises in the centre of small cloud pockets, or cells. The gaps of sky around the cloud cells are the pathways for cooler air to sink below the hot rising air.

On Earth, the rising air contains water which condenses to form clouds. The dust clouds imaged by Mars Express show the same process, but on Mars the rising air columns contain dust rather than water. The Sun heats dust-laden air causing it to rise and form dusty cells. The cells are surrounded by areas of sinking air which have less dust. This gives rise to the granular pattern also seen in the image of clouds on Earth.

By tracking the movement of cells in the sequence of images, the wind speed can be measured. Wind blows over the cloud features at speeds of up to 140 km/h, causing the shape of the cells to elongate in the direction of the wind. Despite the chaotic and dynamic atmospheres of Mars and Earth, nature creates these orderly patterns.

"When thinking of a Mars-like atmosphere on Earth, one might easily think of a dry desert or polar region. It is quite unexpected then, that through tracking the chaotic movement of dust storms, that parallels can be drawn with the processes that occur in Earth's moist, hot, and decidedly very un-Mars-like tropical regions," comments Colin Wilson, ESA's Mars Express project scientist.

One key insight made possible with the VMC images is the measurement of the altitude of dust clouds. The length of the shadows they cast are measured and combined with knowledge of the Sun's position to measure the height of the clouds above the martian surface. Results revealed that dust can reach approximately 6-11 km above the ground and the cells have typical horizontal sizes of 20-40 km.

"Despite the unpredictable behaviour of dust storms on Mars and the strong wind gusts that accompany them, we have seen that within their complexity, organised structures such as fronts and cellular convection patterns can emerge," explains Agustin Sanchez-Levaga from the Universidad del Pais Vasco UPV/EHU (Spain), who leads the VMC science team and is lead author of a paper presenting the new analysis.

Such organised cellular convection is not unique to Earth and Mars; observations of the Venusian atmosphere by Venus Express arguably show similar patterns. "Our work on Mars dry convection is a further example of the value of comparative studies of similar phenomena occurring in planetary atmospheres in order to better understand the mechanisms underlying them under different conditions and environments," adds Agustin.

As well as learning more about how planetary atmospheres 'work', understanding dust storms is relevant for future missions to Mars. In extreme cases, dust storms can block much of the light from the Sun from reaching the solar cells of rovers on the surface of the Red Planet. In 2018, a planetary-scale dust storm not only blocked sunlight reaching the surface, but also covered the solar panels of NASA's Opportunity rover with dust. Both of these factors led to the rover losing electrical power, ending the mission.

Monitoring the evolution of dust storms is crucial for helping protect future solar-powered missions - and eventually crewed missions to the planet - against such powerful phenomena.

Research Report:'Cellular patterns and dry convection in textured dust storms at the edge of Mars North Polar Cap'


Related Links
Mars Express at ESA
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MARSDAILY
MAVEN observes Martian light show caused by major solar storm
Boulder CO (SPX) Nov 10, 2022
For the first time in its eight years orbiting Mars, NASA's MAVEN mission witnessed two different types of ultraviolet aurorae simultaneously, the result of solar storms that began on Aug. 27. MAVEN - the Mars Atmosphere and Volatile Evolution mission - is the only asset at Mars able to observe the Sun's activity and the response of the thin Martian atmosphere at the same time. Real-time analysis and simulations of the solar eruptions from NASA's Moon to Mars Space Weather Analysis Office also all ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MARSDAILY
NASA Moon mission 'exceeding' expectations

NASA, Japan announce Gateway contributions, Space Station extension

Humanity to go back to the moon. Ukrainian contribution to the space science

ispace Announces Mission 1 Launch Date

MARSDAILY
Galactic Energy carries out fourth successful launch

Shenzhou XIV taikonauts perform third spacewalk

China launches spacecraft carrying cargo for space station

China's cargo spacecraft sets new world record

MARSDAILY
Meteorite offers insight into building blocks of early life

New observation method helps unlock secrets of UK meteorite

Twin tail revealed in new Hubble image of Didymos-Dimorphos system following DART impact

SwRI experiment helps predict effects of DART impact

MARSDAILY
Mars and Jupiter moons meet

NASA studies origins of dwarf planet Haumea

NASA study suggests shallow lakes in Europa's icy crust could erupt

Sharpest Earth-based images of Europa and Ganymede reveal their icy landscape

MARSDAILY
SwRI scientists compile Cassini's unique observations of Saturn's rings

Exploring Europa possible with silicon-germanium transistor technology

Scientists depict Dragonfly landing site on Saturn moon Titan

Saturn's rings and tilt could be the product of an ancient, missing moon

MARSDAILY
Microsoft and Planet to provide AI and satellite data for African climate projects

China launches Yaogan 34 remote sensing satellite

Lockheed Martin, NVIDIA to build digital twin of current global weather conditions for NOAA

Metaspectral raises $4.7M to launch fusion, a cloud-based AI platform

MARSDAILY
With new supplies, space station astronauts to research mending broken bones

Who will become history's first 'parastronaut'?

Gravitics raises $20M in bid to build next-generation space station modules

Preparing For Space Travel

MARSDAILY
Colliding magnetic fields reveal unknown planets

"Polluted" white dwarfs show that stars and planets grow together

Early planetary migration can explain missing planets

Oldest planetary debris in our galaxy found from new study









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.