Mars Exploration News  
MARSDAILY
Martian Meteorite's organic materials origin not biological
by Staff Writers
Washington DC (SPX) Jan 14, 2022

The Allan Hills 84001 meteorite courtesy of NASA/JSC/Stanford University.

Organic molecules found in a meteorite that hurtled to Earth from Mars were synthesized during interactions between water and rocks that occurred on the Red Planet about 4 billion years ago, according to new analysis led by Carnegie's Andrew Steele and published by Science.

The meteorite, called Allan Hills (ALH) 84001, was discovered in the Antarctic in 1984 and is considered one of the oldest known projectiles to reach Earth from Mars.

"Analyzing the origin of the meteorite's minerals can serve as a window to reveal both the geochemical processes occurring early in Earth's history and Mars' potential for habitability," explained Steele, who has done extensive research on organic material in Martian meteorites and is a member of both the Perseverance and Curiosity rovers' science teams.

Organic molecules contain carbon and hydrogen, and sometimes include oxygen, nitrogen, sulfur, and other elements. Organic compounds are commonly associated with life, although they can be created by non-biological processes as well, which are referred to as abiotic organic chemistry.

For years, scientists have debated the origin story for the organic carbon found in the Allan Hills 84001 meteorite, with possibilities including various abiotic process related to volcanic activity, impact events on Mars, or hydrological exposure, as well as potentially the remnants of ancient life forms on Mars or contamination from its crash landing on Earth.

The Steele-led team, which also included Carnegie's Larry Nittler, Jianhua Wang, Pamela Conrad, Suzy Vitale, and Vincent Riggi as well as researchers from GFZ German Research Centre for Geosciences, Free University of Berlin, NASA Johnson Space Center, NASA Ames Research Center, and Rensselaer Polytechnic Institute, used a variety of sophisticated sample preparation and analysis techniques-including co-located nanoscale imaging, isotopic analysis, and spectroscopy-to reveal the origin of organic molecules in the Allan Hills 84001 meteorite.

They found evidence of water-rock interactions similar to those that happen on Earth. The samples indicate that the Martian rocks experienced two important geochemical processes. One, called serpentinization, occurs when iron- or magnesium-rich igneous rocks chemically interact with circulating water, changing their mineralogy and producing hydrogen in the process. The other, called carbonization, involves interaction between rocks and slightly acidic water containing dissolved carbon dioxide and results in the formation of carbonate minerals.

It is unclear whether these processes were induced by surrounding aqueous conditions simultaneously or sequentially, but the evidence indicates that the interactions between water and rocks did not occur over a prolonged period. What is evident, however, is that the reactions produced organic material from the reduction of carbon dioxide.

These mineralogical features are rare in Martian meteorites, and while carbonation and serpentinization have been shown in orbital surveys of Mars and carbonation has been found in other, less-ancient, Martian meteorites, this is the first instance of these processes occurring in samples from ancient Mars. Organic molecules have been detected by Steele in other Martian meteorites and from his work with the Sample Analysis at Mars (SAM) team on the Curiosity rover, indicating that abiotic synthesis of organic molecules has been a part of Martian geochemistry for much of the planet's history.

"These kinds of non-biological, geological reactions are responsible for a pool of organic carbon compounds from which life could have evolved and represent a background signal that must be taken into consideration when searching for evidence of past life on Mars," Steele concluded. "Furthermore, if these reactions happened on ancient Mars, they must have happened on ancient Earth, and could possibly explain the results we've seen from Saturn's moon Enceladus as well. All that is required for this type of organic synthesis is for a brine that contains dissolved carbon dioxide to percolate through igneous rocks. The search for life on Mars is not just an attempt to answer the question 'are we alone?' It also relates to early Earth environments and addresses the question of 'where did we come from?'"


Related Links
Carnegie Institution for Science
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MARSDAILY
New Curtin study pinpoints likely home of Martian meteorites
Perth, Australia (SPX) Nov 04, 2021
Curtin University researchers have pinpointed the likely origin of a group of meteorites ejected from Mars, using a machine learning algorithm that analyses high-resolution planetary images. The new research, published in Nature Communications, identified meteorites that landed on Earth likely originated from Mars' Tooting crater, located in the Tharsis region, which is the largest volcanic province in the solar system. About 166 Martian rocks have landed on Earth over the past 20 million ye ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MARSDAILY
Chinese lunar rover's 2-year travelogue on moon's far side reported

'Slushy' magma ocean led to formation of the Moon's crust

Researchers propose new explanation for Moon's half-century magnetic mystery

MDA awarded contract for lunar landing sensors

MARSDAILY
China's rocket technology hits the ski slopes

China conducts its first rocket launch of 2022

Shouzhou XIII crew finishes cargo spacecraft, space station docking test

China to complete building of space station in 2022

MARSDAILY
Looking Up at the Asteroids in the Neighborhood

AFRL detects moonlet around asteroid with smallest telescope yet

Asteroid with a refreshed surface

Asteroid 'Apophis' predicted to skim dangerously close to Earth in 2029

MARSDAILY
Oxygen ions in Jupiter's innermost radiation belts

Ocean Physics Explain Cyclones on Jupiter

Looking Back, Looking Forward To New Horizons

Testing radar to peer into Jupiter's moons

MARSDAILY
SwRI scientist uncovers evidence for an internal ocean in small Saturn moon

MARSDAILY
Manufacturing revenues for Remote Sensing to reach $76B by 2030

Particles formed in boreal forests affect clouds in the troposphere

The secrets of ancient Japanese tombs revealed thanks to satellite images

Flying with the clouds

MARSDAILY
NASA Solar Sail Mission to Chase Tiny Asteroid After Artemis I Launch

NASA Offers $1 Million for Innovative Systems to Feed Tomorrow's Astronauts

Russian cosmonauts conduct EVA to complete Nauka Lab Module integration to ISS

Russia's only female cosmonaut to travel to space in September

MARSDAILY
TESS Science Office at MIT hits milestone of 5,000 exoplanet candidates

SETI's plan for a sky-monitoring telescope on the moon

New insights into seasons on a planet outside our solar system

Newly-Found Planets On The Edge Of Destruction









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.