Mars Exploration News  
MARSDAILY
Mars Express peers into Mars' 'Grand Canyon'
by Staff Writers
Paris (ESA) Jul 21, 2022

This image from ESA's Mars Express shows Ius and Tithonium Chasmata, which form part of Mars' Valles Marineris canyon structure. The area outlined by the bold white box indicates the area imaged by the Mars Express High Resolution Stereo Camera on 21 April 2022 during orbit 23123.

The latest image release from ESA's Mars Express takes us over two ruptures in the martian crust that form part of the mighty Valles Marineris canyon system.

Valles Marineris cuts across Mars like the Grand Canyon cuts across the United States, except the latter is miniscule in comparison. At 4000 km long, 200 km wide and up to 7 km deep, Valles Marineris is almost ten times longer, 20 times wider and five times deeper than the Grand Canyon. As the largest canyon system in the Solar System, it would span the distance from the northern tip of Norway to the southern tip of Sicily.

There's another big difference between the two: whilst the Grand Canyon was formed as the Colorado River eroded away rock, Valles Marineris is thought to have formed through the drifting apart of tectonic plates.

The image shows two trenches (or chasma) that form part of western Valles Marineris. On the left (south), is the 840 km-long Ius Chasma, and on the right (north) is the 805 km-long Tithonium Chasma. Whilst these high-resolution images show incredible surface detail, it is only when we look at an elevation map (see above) that we realise how spectacularly deep the chasmata are - up to 7 km! At 4809 m, the Alps' tallest mountain Mont Blanc would be dwarfed if it was put inside Tithonium Chasma.

At the top of Tithonium Chasma, a patch of dark sand brings colour contrast to the image. This sand may have come from the nearby Tharsis volcanic region.

Next to the dark sand dunes are two light-toned mounds (one cut in half by the upper image border). These 'mounds' are more like mountains, rising more than 3000 metres in height. Their surfaces have been strongly eroded by Mars' strong winds, indicating that they are made of a weaker material than the surrounding rock.

Between the two mounds we see a series of smaller bumps, as shown in the second perspective view. Investigations by Mars Express have found water-bearing sulphate minerals in this region. This suggests that these bumps may have formed when liquid that once filled the chasma evaporated, although this theory is still hotly debated.

To the lower right of the mound that we see fully (upper right in the second perspective view), we can see parallel lines and debris piles that indicate a recent landslide. This is also visible as a large purple area in the topography image below. The landslide was caused by the collapse of the canyon wall on the right, and is likely to have occurred relatively recently because it has not been strongly eroded.

The gnarly floor of Ius Chasma is equally fascinating. As tectonic plates pulled apart, they appear to have caused jagged triangles of rock to form that look like a row of shark teeth. Over time, these rock formations have collapsed and eroded.


Related Links
Mars Express at ESA
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MARSDAILY
The Aonia Terra region of Mars in colour
Berlin, Germany (SPX) Jun 10, 2022
Mars, Earth's neighbouring planet, is not particularly known for its colourful appearance. It is usually thought of as an orange-brown expanse, stretching as far as the eye - or at least the cameras on rovers and spacecraft - can see. But there are landscapes that are a veritable kaleidoscope of colour by Martian standards. One such area has been captured in the latest images from DLR's Mars camera. These were created using data acquired over the southern highland region of Aonia Terra and show various ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MARSDAILY
NASA selects Draper to for Lunar Far Side mission

New method increases lunar mapping accuracy to unprecedented levels

Goodyear joins Lockheed Martin to commercialize lunar mobility

Johns Hopkins APL assembles first global map of lunar hydrogen

MARSDAILY
China releases images of Martian satellite

Chinese astronauts set up new lab on space station

China successfully launches lab to Tiangong space station

China's space station expanding nation technology base

MARSDAILY
Some asteroids aged early by Sun

The plan to unlock the biggest wealth through asteroid mining

DLR to investigate dust from asteroid Ryugu

Hopping space dust may influence the way asteroids look and move

MARSDAILY
Why Jupiter doesn't have rings like Saturn

You can help scientists study the atmosphere on Jupiter

SwRI scientists identify a possible source for Charon's red cap

NASA's Europa Clipper Mission Completes Main Body of the Spacecraft

MARSDAILY
SwRI researcher shows how elliptical craters could shed light on age of Saturn's moons

MARSDAILY
Innovative data satellite enters commercial service

Landsat turns 50

NOAA contracts with Planet to image oil spills, marine debris, and marine life

Satellite Vu and SSTL commission satellite clone to double climate data collection

MARSDAILY
Space For Humanity will send first Egyptian to space via Blue Origin

Russia to quit International Space Station 'after 2024'

Russian, European astronauts make rare joint spacewalk at ISS

Dragon docks at ISS to deliver various science payloads

MARSDAILY
How do collisions of rocks with planets help the planets evolve?

A New Method to Detect Exoplanets

Lava caves of Hawaii Island contain thousands of unknown bacterial species

Rocking shadows in protoplanetary discs









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.