Mars Exploration News  
MARSDAILY
Making methane on Mars
by Staff Writers
Irvine CA (SPX) Jan 15, 2021

illustration only

Among the many challenges with a Mars voyage, one of the most pressing is: How can you get enough fuel for the spacecraft to fly back to Earth?

Houlin Xin, an assistant professor in physics and astronomy, may have found a solution.

He and his team have discovered a more efficient way of creating methane-based rocket fuel theoretically on the surface of Mars, which can make the return trip all more feasible.

The novel discovery comes in the form of a single-atom zinc catalyst that will synthesize the current two-step process into a single-step reaction using a more compact and portable device.

"The zinc is fundamentally a great catalyst," Xin says. "It has time, selectivity and portability - a big plus for space travel."

The process of creating methane-based fuel has been theorized before, initially by Elon Musk and Space X. It utilized a solar infrastructure to generate electricity, resulting in the electrolysis of carbon dioxide, which, when mixed with water from the ice found on Mars, produces methane.

This process, known as the Sabatier process, is used on the International Space Station to produce breathable oxygen from water. One of the main issues with the Sabatier process is that it is a two-stage procedure requiring large faculties to operate efficiently.

The method developed by Xin and his team will use anatomically dispersed zinc to act as a synthetic enzyme, catalyzing the carbon dioxide and initializing the process. This will require much less space and can efficiently produce methane using materials and under conditions similar to those found on the surface of Mars.

"The process we developed bypasses the water-to-hydrogen process, and instead efficiently converts CO2 into methane with high selectivity," Xin says.

Currently, rockets created by Lockheed and Boeing use liquid hydrogen as fuel for the rockets. While it is cheap and effective, this fuel source has its drawbacks. Liquid hydrogen leaves carbon residue in the engine of the rocket, which requires cleaning after each launch; something that would be impossible on Mars.

Space X and Elon Musk have developed and are currently testing a methane fuel-based engine, known as the Space X Raptor. Raptor will power Space X's next generation of spacecraft named Starship and Super Heavy. At this time, neither have made it into orbit, and only one has consistently taken flight.

Despite the breakthrough, the process developed by Xin is far from implementation. Currently they only have a "proof of concept," meaning that while it has been tested and proven in a lab, it has yet to tested in real world - or planet - conditions.

"Lots of engineering and research is needed before this can be fully implemented," he says. "But the results are very promising."


Related Links
University of California, Irvine
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MARSDAILY
InSight 'Mole' payload ends operations on Mars
Pasadena CA (JPL) Jan 15, 2021
The heat probe developed and built by the German Aerospace Center (DLR) and deployed on Mars by NASA's InSight lander has ended its portion of the mission. Since Feb. 28, 2019, the probe, called the "mole," has been attempting to burrow into the Martian surface to take the planet's internal temperature, providing details about the interior heat engine that drives the Mars' evolution and geology. But the soil's unexpected tendency to clump deprived the spike-like mole of the friction it needs to hammer i ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MARSDAILY
Lunar Surface Trash or Treasure?

Orion Ready to Fuel Up for Artemis I Mission

China issues document to boost global cooperation on lunar samples

Lockheed Martin-Built Orion spacecraft is ready for its Moon mission

MARSDAILY
China's space station core module, cargo craft pass factory review

Key modules for China's next space station ready for launch

Major space station components cleared for operations

Chinese space enterprise gears up for record-breaking 40-plus launches in 2021

MARSDAILY
Why do some regions on the dwarf planet Ceres appear blue

Remote sensing data sheds light on when and how asteroid Ryugu lost its water

NASA's first mission to the Trojan Asteroids integrates its second scientific instrument

Knowledge of asteroid composition to help avert collisions

MARSDAILY
The 15th Anniversary of New Horizons Leaving Earth

Juno mission expands into the future

Dark Storm on Neptune reverses direction, possibly shedding a fragment

The 'Great' Conjunction of Jupiter and Saturn

MARSDAILY
Astronomers estimate Titan's largest sea is 1,000 feet deep

SwRI models point to a potentially diverse metabolic menu at Enceladus

Impact craters reveal details of Titan's dynamic surface weathering

NASA Scientists Discover 'Weird' Molecule in Titan's Atmosphere

MARSDAILY
Satellite-powered app to spot loneliness in hotspots in UK cities

Earth Observation data could represent a billion-dollar opportunity for Africa

Genesis of blue lightning into the stratosphere detected from ISS

Counting elephants from space

MARSDAILY
Tourism on track in the world's largest cave

Glenn's Power Systems Facility has supported Station research for decades

Muscles, metals, bubbles and rotifers - a month of European science in space

Asteroids vs. microbes

MARSDAILY
A 'super-puff' planet like no other

Simulating evolution to understand a hidden switch

Astronomers finally measure polarized light from exoplanet

A rocky planet around one of our galaxy's oldest stars









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.