Mars Exploration News  
MARSDAILY
Life of a pure Martian design
by Staff Writers
Vienna, Austria (SPX) Feb 19, 2021

The scanning transmission electron microscopy image of M. sedula cell grown on Black Beauty. Image reveals nonhomogeneous, rugged and coarse cellular interior of M. sedula filled with crystalline deposits.

Early Mars is considered as an environment where life could possibly have existed. There was a time in the geological history of Mars when it could have been very similar to Earth and harbored life as we know it.

In opposite to the current Mars conditions, bodies of liquid water, warmer temperature, and higher atmospheric pressure could have existed in Mars' early history. Potential early forms of life on Mars should have been able to use accessible inventories of the red planet: derive energy from inorganic mineral sources and transform CO2 into biomass. Such living entities are rock-eating microorganisms, called "chemolithotrophs", which are capable of transforming energy of stones to energy of life.

Martian rocks as energy source for ancient life forms
"We can assume that life forms similar to chemolithotrophs existed there in the early years of the red planet," says astrobiologist Tetyana Milojevic, the head of Space Biochemistry group at the University of Vienna.

The traces of this ancient life (biosignatures) could have been preserved within the Noachian terrains with moisture-rich ancient geological history and mineral springs that could have been colonized by chemolithotrophs. In order to properly assess Martian relevant biosignatures, it is crucially important to consider chemolithotrophs in Martian relevant mineralogical settings.

One of rare pieces of Mars' rocks was recently crushed to envisage how life based on Martian materials may look like. The researches used the genuine Noachian Martian breccia Northwest Africa (NWA) 7034 (nicknamed "Black Beauty") to grow the extreme thermoacidophile Metallosphaera sedula, an ancient inhabitant of terrestrial thermal springs. This brecciated regolith sample represents the oldest known Martian crust of the ancient crystallization ages (ca. 4.5 Ga).

A specimen of "Black Beauty"
"Black Beauty is among the rarest substances on Earth, it is a unique Martian breccia formed by various pieces of Martian crust (some of them are dated at 4.42 +/- 0.07 billion years) and ejected millions years ago from the Martian surface. We had to choose a pretty bold approach of crushing few grams of precious Martian rock to recreate the possible look of Mars' earliest and simplest life form," says Tetyana Milojevic, corresponding author of the study, about the probe that was provided by colleagues from Colorado, USA.

As a result, the researchers observed how a dark fine-grained groundmass of Black Beauty was biotransformed and used in order to build up constitutive parts of microbial cells in form of biomineral deposits. Utilizing a comprehensive toolbox of cutting edge techniques in fruitful cooperation with the Austrian Center for Electron Microscopy and Nanoanalysis in Graz, the researchers explored unique microbial interactions with the genuine Noachian Martian breccia down to nanoscale and atomic resolution.

M. sedula living on Martian crustal material produced distinct mineralogical and metabolic fingerprints, which can provide an opportunity to trace the putative bioalteration processes of the Martian crust.

Analysing metabolic and mineralogical fingerprints
"Grown on Martian crustal material, the microbe formed a robust mineral capsule comprised of complexed iron, manganese and aluminum phosphates. Apart from the massive encrustation of the cell surface, we have observed intracellular formation of crystalline deposits of a very complex nature (Fe, Mn oxides, mixed Mn silicates).

These are distinguishable unique features of growth on the Noachian Martian breccia, which we did not observe previously when cultivating this microbe on terrestrial mineral sources and a stony chondritic meteorite", says Milojevic, who recently received an ERC Consolidator Grant for her research further investigating biogenicity of Martian materials.

The observed multifaceted and complex biomineralization patterns of M. sedula grown on Black Beauty can be well stated by rich, diverse mineralogy and multimetallic nature of this ancient Martian meteorite. The unique biomineralization patterns of Black Beauty-grown cells of M. sedula emphasize the importance of experiments on genuine Martian materials for Mars-relevant astrobiological investigations.

"Astrobiology research on Black Beauty and other similar 'Flowers of the Universe' can deliver priceless knowledge for the analysis of returned Mars samples in order to assess their potential biogenicity", concludes Milojevic.

Research Report: "Chemolithotrophy on the Noachian Martian breccia NWA 7034 via experimental microbial biotransformation"


Related Links
University of Vienna
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MARSDAILY
Was there ever life on Mars? NASA's Perseverance rover wants to find out
Washington (AFP) Feb 18, 2021
Seven months in space, a mission that was decades in the making and cost billions of dollars, all to answer the question: was there ever life on Mars? NASA's Perseverance rover prepares for touchdown on the Red Planet Thursday to search for telltale signs of microbes that might have existed there billions of years ago, when conditions were warmer and wetter than they are today. Over the course of several years, it will attempt to collect 30 rock and soil samples in sealed tubes, to be eventually ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MARSDAILY
How to Get Water on the Moon

Teaching an Old Spacecraft New Tricks to Continue Exploring the Moon

NASA awards contract to launch initial elements for lunar outpost

Goddard's Core Flight Software Chosen for NASA's Lunar Gateway

MARSDAILY
Chinese tracking vessel sets sail for monitoring missions in Indian Ocean

China's 'space dream': A Long March to the Moon and beyond

Three generations dedicated to space program

China's space station core module, cargo craft pass factory review

MARSDAILY
The comet that killed the dinosaurs

Ceramic chips inside meteorites hint at wild days of the early solar system

What Hollywood gets wrong, and right, about asteroids

NASA's OSIRIS-REx to Fly a Farewell Tour of Bennu

MARSDAILY
Solar system's most distant planetoid confirmed

Peering at the Surface of a Nearby Moon

A Hot Spot on Jupiter

The 15th Anniversary of New Horizons Leaving Earth

MARSDAILY
Saturn's Tilt Caused By Its Moons

Astronomers estimate Titan's largest sea is 1,000 feet deep

SwRI models point to a potentially diverse metabolic menu at Enceladus

MARSDAILY
Measuring photosynthesis on Earth from space

NASA-funded network tracks the recent rise and fall of ozone depleting pollutants

We found the first Australian evidence of a major shift in Earth's magnetic poles

NOAA selects Woolpert to collect Topo-Bathy Lidar, imagery over Hawaiian islands

MARSDAILY
Astronauts training for space station missions

Space for all is this student's goal

NASA fears gap in astronaut crew at multibillion-dollar space station

In tit-for-tat move, Russia denies visa to NASA envoy

MARSDAILY
On the quest for other Earths

The search for life beyond Earth

NASA's TESS discovers new worlds in a river of young stars

Lasers reveal the secret interior of rocky exoplanets









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.