Ingenuity Mars Helicopter Flight 14 Successful by Staff Writers Pasadena CA (JPL) Oct 28, 2021
The successful 14th flight of NASA's Ingenuity Mars Helicopter took place shortly after 1:18 a.m. PDT Oct. 24 at Jezero Crater. As planned, the helicopter executed its first 2,700 rpm flight, proving that Ingenuity is capable of flying in the weeks and months ahead on Mars, during which seasonal changes on the surface will result in decreases in air density. The short 23-second flight included a peak altitude of 16 feet (5 meters) above ground level, with a small sideways translation of 7 feet (2 meters) to avoid a nearby sand ripple. This was also the first time Ingenuity recorded black-and-white navigation camera images at the high-rate of about seven frames a second.
Previous Report
Flying on Mars Is Getting Harder and Harder With the benefit of the knowledge acquired, conducting flights on Mars has in most ways become easier than it was at the outset. But in one important way it is actually getting more difficult every day: I'm talking about the atmospheric density, which was already extremely low and is now dropping further due to seasonal variations on Mars. When we designed and tested Ingenuity on Earth, we expected Ingenuity's five-flight mission to be completed within the first few months after Perseverance's landing in February 2021. We therefore prepared for flights at atmospheric densities between 0.0145 and 0.0185 kg/m3, which is equivalent to 1.2-1.5% of Earth's atmospheric density at sea level. With Ingenuity in its sixth month of operation, however, we have entered a season where the densities in Jezero Crater are dropping to even lower levels. In the coming months we may see densities as low as 0.012 kg/m3 (1.0% of Earth's density) during the afternoon hours that are preferable for flight. The difference may seem small, but it has a significant impact on Ingenuity's ability to fly. At our lower design limit for atmospheric density (0.0145 kg/m3), we know that Ingenuity has a thrust margin of at least 30%. Thrust margin refers to the excess thrust that Ingenuity can produce above and beyond what is required to hover. That additional thrust is needed on takeoffs and climbs, during maneuvers, and also when tracking terrain with varying height. But if the atmospheric density were to drop to 0.012 kg/m3 in the coming months, our helicopter's thrust margin could drop to as low as 8%, which means that Ingenuity would be operating close to aerodynamic stall (a condition where further increases in the blade's angle of attack does not produce more lift, only more drag). Thankfully, there is a way to tackle this issue - but it involves spinning the rotors even faster than we have been doing up to now. In fact, they will have to spin faster than we have ever attempted with Ingenuity or any of our test helicopters on Earth. This is not something we take lightly, which is why our next operations on Mars will be focused on carefully testing out higher rotor speeds in preparation for future flights. We will begin by performing a high-speed spin of the rotor without leaving the ground, reaching a peak rotor speed of 2,800 rpm (more than a 10% increase relative to our prior Mars experience of 2,537 rpm). If all goes well, we will follow this with a short test flight at a slightly lower rotor speed of 2,700 rpm. This would be our 14th flight and (hopefully) a relatively boring one compared to any of our more recent flights, where we flew long distances to acquire images of interest for the Perseverance rover team. Occurring no earlier than Friday, Sept. 17 (with data coming down no earlier than Saturday morning), the short hop would have Ingenuity take off, climb to 16 feet (5 meters), perform a small translation (sideways move), and then land again. And while the results from a Flight 14 should be less than riveting, the significant increase in available rpms (from 2,537 to 2,700) for future helicopter operations will provide us the option to perform scouting missions for Perseverance at lower atmospheric densities. It also leaves some wiggle room if we decide an additional rpm increase is needed later. A speed increase like this comes with a number of potential issues. One of these has to do with aerodynamics: A rotor speed of 2,800 rpm, in combination with wind and helicopter motion, could cause the tips of the rotor blades to encounter the air at nearly 0.8 Mach - that is, 80% of the speed of sound on Mars. (The speed of sound on Mars is somewhat lower than we are used to - about 0.75 the speed of sound on Earth.) If the blade tips get sufficiently close to the speed of sound, they will experience a very large increase in aerodynamic drag that would be prohibitive for flight. For Ingenuity's rotor we do not expect to encounter this phenomenon until even higher Mach numbers, but this has never been confirmed in testing on Earth. Another potential issue is unknown resonances in the helicopter structure. Like all mechanical systems, Ingenuity has resonances that can lead to large vibrations when excited at particular frequencies. It is important to ensure that there are no significant resonances at the rotor speed used for flight, as this could cause damage to hardware and lead to a deterioration in sensor readings needed by the flight control system. Additional demands will also be put on several components of Ingenuity's design: The motors will need to spin faster, the electrical system will need to deliver more power, and the entire rotor system will need to withstand the higher loads that come with increased rotor speeds. It all adds up to a significant challenge, but by approaching the issue slowly and methodically, we hope to fully check out the system at higher rotor speeds and enable Ingenuity to keep flying in the months ahead. Stay tuned for updates.
Mars helicopter Ingenuity approaches 14th flight Washington DC (UPI) Oct 22, 2021 The Mars helicopter Ingenuity is ready for a short Martian flight as early as Saturday to test summer weather conditions that have arrived at its location on the Red Planet after two weeks of no communication because of blockage by the sun. The flight, Ingenuity's 14th, is brief and simple by design. As weather at Jezero Crater gets warmer, the aircraft's rotors must turn faster to achieve flight, so engineers have designed a quick hop to test the helicopter's performance. "Ingenuity suc ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |