Mars Exploration News
MARSDAILY
Hubble and MAVEN collaborate to uncover Mars' water loss
illustration only
Hubble and MAVEN collaborate to uncover Mars' water loss
by Clarence Oxford
Los Angeles CA (SPX) Sep 06, 2024

Mars, once a planet with abundant water, now presents a mystery regarding the fate of its water resources. While scientists believe some water may have gone underground over the past 3 billion years, a significant amount has escaped. NASA's Hubble Space Telescope and the Mars Atmosphere and Volatile Evolution (MAVEN) mission are now shedding light on this longstanding mystery.

"There are only two places water can go. It can freeze into the ground, or the water molecule can break into atoms, and the atoms can escape from the top of the atmosphere into space," said John Clarke, study leader from the Center for Space Physics at Boston University. "To understand how much water there was and what happened to it, we need to understand how the atoms escape into space."

Clarke's team used data from Hubble and MAVEN to assess the current escape rate of hydrogen atoms into space, which enabled them to trace the escape process back through time, offering insights into Mars' water history.

Hydrogen and Deuterium: Clues to Water Loss
Water molecules in Mars' atmosphere break apart due to sunlight, producing hydrogen and oxygen atoms. The team measured hydrogen and deuterium, a form of hydrogen with an additional neutron, giving it double the mass of regular hydrogen. This added mass causes deuterium to escape more slowly into space than hydrogen.

Over time, Mars has lost more hydrogen than deuterium, resulting in a higher deuterium-to-hydrogen ratio. By measuring this ratio, scientists can estimate how much water existed during Mars' warmer, wetter periods. By examining current escape rates, researchers can infer the processes that influenced water loss over the past 4 billion years.

Although MAVEN provided most of the data, it was not always able to detect deuterium emissions during the Martian winter due to Mars' elliptical orbit, which takes it far from the Sun. Clarke and his team turned to Hubble to fill in gaps in the data and complete a picture of hydrogen and deuterium escape over a full Martian year - 687 Earth days. Hubble also provided historical data stretching back to 1991, prior to MAVEN's arrival at Mars in 2014.

Together, Hubble and MAVEN offered the first comprehensive view of hydrogen atoms escaping Mars into space.

Unraveling the Martian Atmosphere
"In recent years scientists have found that Mars has an annual cycle that is much more dynamic than people expected 10 or 15 years ago," explained Clarke. "The whole atmosphere is very turbulent, heating up and cooling down on short timescales, even down to hours. The atmosphere expands and contracts as the brightness of the Sun at Mars varies by 40 percent over the course of a Martian year."

The team observed that escape rates for hydrogen and deuterium increase dramatically when Mars nears the Sun. Previously, scientists thought these atoms drifted slowly upward through the atmosphere before escaping. However, this new data reveals that the atmospheric conditions fluctuate rapidly. As Mars approaches the Sun, water molecules rise quickly, releasing hydrogen and deuterium atoms at higher altitudes.

Another critical finding was that the rapid changes in hydrogen and deuterium escape rates require additional energy to explain. At the upper atmosphere's temperature, only a small fraction of atoms move fast enough to escape Mars' gravity. These super-thermal atoms are created when they receive an extra energy boost - either through collisions with solar wind protons or chemical reactions triggered by sunlight.

Implications Beyond Mars
Understanding Mars' water loss is key to comprehending not only the evolution of planets within our solar system but also those orbiting other stars. As astronomers discover more Earth-sized planets, Mars offers a crucial analog for understanding conditions on distant worlds. Mars, Earth, and Venus, all within or near our solar system's habitable zone, have vastly different atmospheres today. Studying Mars and its atmospheric history offers vital insights into planetary evolution across the galaxy.

Research Report:Martian atmospheric hydrogen and deuterium: Seasonal changes and paradigm for escape to space

Related Links
MAVEN
Mars News and Information at MarsDaily.com
Lunar Dreams and more

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
MARSDAILY
Why the Martian polar caps show significant differences
Los Angeles CA (SPX) Sep 05, 2024
For centuries, observers have watched the bright poles of Mars change with the seasons. In the last 50 years, scientists have determined that these polar caps are primarily composed of carbon dioxide that cycles in and out of the atmosphere with the seasons. However, the underlying processes driving these changes are intricate and continue to be a focus of scientific study. In a recent paper published in 'Icarus', PSI Senior Scientist Candice Hansen, along with her team, delves into these complexi ... read more

MARSDAILY
Researchers confirm volcanic activity on the Moon 120 million years ago

Find Me on the Moon: NASA Seeks Navigation Solutions for Lunar Exploration

Simulation Test Stand for China's lunar mission passes key milestone

China expands global partnerships for Lunar Research Station

MARSDAILY
China launches Yaogan 43B remote-sensing satellites from Xichang

Shenzhou-18 Crew Tests Fire Alarms and Conducts Medical Procedures in Space

Astronauts on Tiangong Space Station Complete Fire Safety Drill

Shenzhou XVIII Crew Conducts Emergency Drill on Tiangong Space Station

MARSDAILY
Gigantic asteroid impact shifted the axis of Solar System's biggest moon

Debris from NASA's DART Mission Could Potentially Reach Earth and Mars

Small asteroid creates 'spectacular fireball' while burning up over Philippines

China unveils asteroid defense plan following recent space event

MARSDAILY
Mystery of Trans-Neptunian Orbits Solved by Stellar Flyby

Outer Solar System may hold far more objects than previously thought

Juice trajectory reset with historic Lunar-Earth flyby

NASA's Juno Mission Maps Jupiter's Radiation Using Danish Technology

MARSDAILY
New analysis of Cassini data yields insights into Titan's seas

Titan's lakes may be shaped by waves

UH scientists discover massive energy imbalance on Saturn

MARSDAILY
Earth scientists take flight, set sail to verify PACE satellite data

Satellites unlock new insights into aerosol layer heights over oceans

ICEYE US Chosen by NASA to Provide Radar Data for Earth Science Research

Spire Global Secures $3.8 Million NOAA Contract for Satellite Weather Data

MARSDAILY
NASA reviews progress of ACS3 solar sail system in orbit

Voyager 1 Team Accomplishes Tricky Thruster Swap

Russia's Soyuz rocket launch to ISS called flawless for NASA veteran's first space trip in decade

What's it Like to Spacewalk?

MARSDAILY
ALMA observations reveal gravitational instability in planet-forming disk

Formation of super-Earths proven limited near metal-poor stars

3 Questions: Evidence for planetary formation through gravitational instability

NASA's carbon nanotube technology aids search for life on exoplanets

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.