Mars Exploration News  
MARSDAILY
How Martian ionospheric dispersion effected on SAR imaging
by Staff Writers
Nanjing, China (SPX) Aug 19, 2022

Time delay and signal shift caused by the ionosphere. a) and b) show the relationship between the time delay and the carrier frequency and TEC and that between the signal shift and the carrier frequency and TEC, respectively.

The subsurface of Mars records important historical information on the formation and evolution of Mars. As an ionized medium, the Martian ionosphere plays a special role in radio wave propagation and is directly related to the local communication on Mars and the communication between Mars and Earth.

Therefore, the information on the subsurface and the Martian ionosphere provides a scientific basis for understanding and exploring Mars, as well as for studying the history of geological evolution. The multiband low-frequency down-looking Synthetic Aperture Radar (SAR) mounted on the Mars Orbiter can emit low-frequency radio waves that can penetrate the surface of Mars and propagate downwards.

When passing through the ionosphere, the High-Frequency (HF) pulse signal of the Mars Exploration Radar is affected by the dispersion effect error, which results in signal attenuation and time delay and brings about a phase advance in such a way that the echo cannot be matched and filtered. I

In a research paper recently published in Space: Science and Technology, Zhijun Yan from Nanjing University of Aeronautics and Astronautics, researched the characteristics of ionospheric distortion and constructed an effective model for the HF waveband to simulate and analyze the influence of the ionospheric dispersion effect on the single SAR signal and imaging under different bandwidths, carrier frequencies, path incidence angles and the ion concentration in the Martian ionosphere.

First of all, the author introduced the ionospheric dispersion effect and signal path change in the ionosphere. The ionosphere was a special dispersive medium with anisotropic characteristics. For a radio signal with a wide frequency spectrum, different frequency components of the signal propagated at different phase velocities in the ionosphere, and thus, different frequency components had different phase relationships.

The signal would be distorted, and the pulse was broadened in time and space. This was the dispersion phenomenon of the ionosphere. Afterwards, mathematical and statistical methods were applied to describe ionospheric impacts on echoes. Ionospheric dispersion had the effects such as signal distortion, turbulence amplitude, and phase fluctuations.

Echoes cannot match the matched filter function, which directly leaded to the degradation of the image quality after pulse compression and the range resolution of the radar which seriously affected its detection capability. The refractive index of electromagnetic wave propagation in the Martian ionosphere can be expressed as a function of the frequency and the electron density.

Considering the working frequency band (MHz) of the Mars Exploration Radar, the high-order terms of the refractive index cannot be ignored. As the refractive index changed with frequency and position, the SAR signal deviated from the normal signal in a vacuum, which affected the result of SAR imaging. The Martian ionosphere was constantly changing and had a certain degree of randomness, which caused the echo phase to be random and indeterminate. Therefore, it was necessary to use statistical models to study the influence of the Martian ionosphere on SAR imaging.

Then, the author simulated signal transmission paths and used the Mars' real ionospheric data to develope the Martian ionospheric model. The path tracking method was used to obtain the influence of the dispersion effect on the radar signal. The additional phase error of the signal was obtained by simulation of the high-order Taylor series approximation. The key step was to establish the spatial distribution of the refractive index and determined the true influence of signal propagation on the SAR echo.

The spatial distribution of the refractive index can be determined by the spatial distribution of electron density and signal frequency. The signal propagation path can be obtained by path tracking technology. On the basis of the above analysis, the actual simulation steps were as follows:

+ According to the ion concentration distribution data of Mars, the Chapman model was used to build the relationship model.

+ According to the system simulation parameters and Ne (Martian ionospheric model of different solar activity periods and different zenith angles), the path tracking method was used to simulate the path of the detection signal refracted in the ionosphere and to calculate the two-way phase advance caused by the dispersion effect.

+ Multiplied the ideal signal and the additional phase advance in the range frequency-domain.

+ Inverse Fourier transform was performed on the frequency-domain signal to obtain the affected signal in the time-domain, and then compare it with the ideal signal.

Moreover, analyses of the phase error as well as the effects on the position of points targets are made. Simulation of the pulse compression processing mode of the point target echo signal are conducted to simulate the SAR echo processing. The phase error caused by the ionospheric dispersion effect brought about different degrees of time-domain frequency shift, which presented difficulties in pulse compression and echo correction. The pulse compression can effectively separate strong point targets at a relatively close distance, but the phase error made it impossible to clearly distinguish point targets after echo processing.

Through the simulations, the author held that the influence of the chromatic dispersion effect on the signal is mainly the introduction of phase errors, signal shift and time delay. Besides, a low-frequency signal shift was greatly affected by total electron content (TEC) and carrier frequency.

The broadening of the main lobe of the pulse after the signal was affected was also related to the bandwidth, carrier frequency, and TEC. In conclusion, the model can effectively estimate Mars without considering the effects of magnetic fields and anomalous solar activity and the effect of the ionosphere on synthetic aperture radar (SAR) echoes.

Research Report:The Effect of Martian Ionospheric Dispersion on SAR Imaging


Related Links
Nanjing University of Aeronautics and Astronautics
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MARSDAILY
Help NASA scientists find clouds on Mars
Pasadena CA (JPL) Jun 29, 2022
NASA scientists hope to solve a fundamental mystery about Mars' atmosphere, and you can help. They've organized a project called Cloudspotting on Mars that invites the public to identify Martian clouds using the citizen science platform Zooniverse. The information may help researchers figure out why the planet's atmosphere is just 1% as dense as Earth's even though ample evidence suggests the planet used to have a much thicker atmosphere. The air pressure is so low that liquid water simply vaporiz ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MARSDAILY
A special Moon snap

Terran Orbital delivers LunIR to Cape Canaveral for Artemis 1 launch

NASA engineer develops tiny, high-powered laser to find water on the Moon

'Long time coming': NASA 'a go' for launch of Artemis test mission to moon

MARSDAILY
China conducts spaceplane flight test

103rd successful rocket launch breaks record

Chinese space-tracking ship docks at Sri Lanka's Hambantota port

Shenzhou XIV astronauts to conduct their first spacewalk in coming days

MARSDAILY
Madrid meteor's cometary origins unearthed

Dust grains older than our sun found in Asteroid Ryugu samples

NASA's Lucy team discovers moon around asteroid Polymele

Space mission shows Earth's water may be from asteroids

MARSDAILY
Uranus to begin reversing path across the night sky on Wednesday

The PI's Perspective: Extending Exploration and Making Distant Discoveries

Underwater snow gives clues about Europa's icy shell

Why Jupiter doesn't have rings like Saturn

MARSDAILY
Lowell Observatory points telescopes at Saturn during closest annual approach

SwRI researcher shows how elliptical craters could shed light on age of Saturn's moons

MARSDAILY
Launch Schedule for 3rd StriX-1 SAR satellite

Hungary sacks weather service chief over inaccurate forecasts

The Lacuna Space water monitoring system

Landsat 9 operations to transition from NASA to US Geological Survey

MARSDAILY
Russian spacewalk cut short due to issue with suit

US should end ISS collaboration with Russia

Boeing eyes February for space capsule's first crewed flight

45 years after launch, NASA's Voyager probes still blazing trails billions of miles away

MARSDAILY
New study examines how many moons an earth-mass planet could host

Webb telescope finds CO2 for first time in exoplanet atmosphere

Breaking in a new planet

Case solved: missing carbon monoxide was hiding in the ice









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.