Frozen beauty in northern Mars by Staff Writers Berlin, Germany (SPX) Mar 31, 2022
These images were created using data acquired by the High Resolution Stereo Camera (HRSC), which was developed at the German Aerospace Center (Deutsches Zentrum fur Luft- und Raumfahrt; DLR) and is operated by the DLR Institute of Planetary Research in Berlin-Adlershof. They show a landscape in Utopia Planitia that is millions of years old and was shaped by ice. Utopia is one of three major topographical depressions in the northern hemisphere of Mars and measures 3300 kilometres across. The basin was probably created approximately four billion years ago by the impact of an asteroid that may have been over 200 kilometres in diameter. Over time, the impact basin, which was initially several kilometres deep, has filled up with sediments and ice that were transported there by wind and water, as well as with lava from low-viscosity volcanic eruptions. In the area of Utopia shown here, it is primarily thick layers of ice and dust that have blanketed the existing topography, creating this almost impressionistic landscape. Utopia - based on an ancient Greek term meaning 'no place' or 'nowhere', or a place that exists only in the imagination - is the largest recognised impact basin on Mars; larger even than the far more striking impact formation Hellas Planitia in the southern highlands. NASA's Viking 2 spacecraft landed in Utopia on 3 September 1976, a few hundred kilometres to the east of the landscape shown here. Alongside its sister spacecraft Viking 1, which landed in Chryse Planitia, it explored Mars for three and a half years. These were the first spacecraft to conduct such missions on the Martian soil. During the winter, Viking 2 transmitted images to Earth showing rocks covered with hoarfrost after cold nights - which caused a scientific sensation at the time.
'Tilted Mars' - an ice machine The inclination of Mars' axis of rotation today, at 25.2 degrees (compared to Earth's 23.3 degrees), means that ice is present in relatively modest amounts at the north and south poles. Ten million years ago, however, the axis could have been tilted as much as 60 degrees from the orbital plane, resulting in much more extreme climate variability - with ice in Utopia Planitia being one of the consequences. This resulted in the mantled deposits shown here. These are thick, ice- and dust-rich layers thought to have been deposited 10 million years ago as snow mixed with wind-blown dust. This mixture of dust and ice covers and smooths out the surface like a cloak. This can be seen very well in the large patches on the left and right of the vertical plan view (Image 1). The two impact craters in the centre of the image, which measure 10 and 12 kilometres across, show a double-layered blanket of ejecta. On closer inspection, the stratified appearance of the mantle deposits can be seen at the crater rims and particularly well inside the impact craters. Here it is referred to as 'concentric crater fill' and is also found in the smaller craters in the area.
Shrinkage cracks filled with dark dust A pattern is faintly visible in the dark-coloured regions just to the right of this crater. This was formed when the surface cracked due to cooling and thermal contraction, leaving a polygonal pattern in the ground. Dark, wind-blown dust deposited in the cracks is responsible for the dark colouring of this region. Curved, sediment-filled depressions are visible throughout the image. These can be circular to elliptical and measure anywhere from a few tens of metres to several kilometres in size and be up to tens of metres deep. They are the result of the melting or evaporation of ice underground, followed by the collapse of the surface. The process of subsidence due to ice loss in the subsurface is referred to as thermokarst. A closer look reveals stratification of the mantle deposits in and around the curved depressions. Radar measurements, which can detect layer boundaries between ice lenses and rock, and spectrometry, which can measure the abundance of hydrogen, have detected water ice in the soil of the northern lowlands. This has been confirmed by NASA's Phoenix lander (2009). Ice has been discovered at greater depths by observations of fresh impact craters and depressions, and also in numerous other locations using radar soundings.
Image processing The oblique perspective views were computed using a terrain model and data from the HRSC nadir and colour channels. The colour-coded topographic view is based on a Digital Terrain Model (DTM) of the region from which the topography of the landscape can be derived. The reference body for the HRSC DTM is a Martian equipotential surface (Areoid). The systematic processing of the camera data was carried out at the DLR Institute of Planetary Research in Berlin-Adlershof. Personnel in the Department of Planetary Sciences and Remote Sensing at Freie Universitat Berlin used these data to create the image products shown here. All images in high resolution and more images acquired by the HRSC instrument can be found in the Mars Express image gallery on flickr.
Mounds of ice in craters give new insight into Mars' past climate West Lafayette IN (SPX) Mar 30, 2022 Newly discovered deposits of layered ice in craters scattered around Mars' southern hemisphere provide insights into how the planet's orientation controlled the planet's climate over the past 4 million years, according to a new study. The findings help scientists understand what controlled Mars' past climate, which is essential for predicting when the planet could have been habitable. The study was published in the AGU journal Geophysical Research Letters, which publishes short-format, high-impact ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |