Frost-Covered Phoenix Lander Seen In Winter Images
Pasadena CA (SPX) Nov 09, 2009 Winter images of NASA's Phoenix Lander showing the lander shrouded in dry-ice frost on Mars have been captured with the High Resolution Imaging Science Experiment, or HiRISE camera, aboard NASA's Mars Reconnaissance Orbiter. The HiRISE camera team at the University of Arizona, Tucson, captured one image of the Phoenix lander on July 30, 2009, and the other on Aug. 22, 2009. That's when the sun began peeking over the horizon of the northern polar plains during winter, the imaging team said. The first day of spring in the northern hemisphere began Oct. 26. "We decided to try imaging the site despite the low light levels," said HiRISE team member Ingrid Spitale of the University of Arizona Lunar and Planetary Laboratory. "The power of the HiRISE camera helped us see it even under these poor light conditions," added HiRISE team member Michael Mellon of the University of Colorado in Boulder, who was also on the Phoenix Mars Lander science team. The HiRISE team targeted their camera at the known location of the lander to get the new images and compared them to a HiRISE image of the frost-free lander taken in June 2008. That enabled them to identify the hardware disguised by frost, despite the fact that their views were hindered by poor lighting and by atmospheric haze, which often obscures the surface at this location and season. Carbon dioxide frost completely blankets the surface in both images. The amount of carbon dioxide frost builds as late winter transitions to early spring, so the layer of frost is thicker in the Aug. 22 image. HiRISE scientists noted that brightness doesn't necessarily indicate the amount of frost seen in the images because of the way the images are processed to produce optimal contrast. Even the darker areas in the frost-covered images are still brighter than typical soil that surrounds the lander in frost-free images taken during the lander's prime mission in 2008. Other factors that affect the relative brightness include the size of the individual grains of carbon dioxide ice, the amount of dust mixed with the ice, the amount of sunlight hitting the surface and different lighting angles and slopes, Spitale and Mellon said. Studying these changes will help us understand the nature of the seasonal frost and winter weather patterns in this area of Mars. Scientists predicted that the ice layer would reach maximum thickness in September 2009, but don't have images to confirm that because HiRISE camera operations were suspended when Mars Reconnaissance Orbiter entered an extended safe mode on Aug. 26. The Phoenix Mars Lander ceased communications last November, after successfully completing its mission and returning unprecedented primary science phase and returning science data to Earth. During the first quarter of 2010, teams at JPL will listen to see if Phoenix is still able to communicate with Earth. Communication is not expected and is considered highly unlikely following the extended period of frost on the lander. HiRISE is run from the Lunar and Planetary Laboratory's HiRISE Operations Center, on the University of Arizona campus. Planetary Sciences Professor Alfred McEwen is HiRISE principal investigator. Planetary Sciences Professor Peter Smith is principal investigator for the Phoenix Mars Lander mission. The Mars Reconnaissance Orbiter is managed by NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, for NASA Science Mission Directorate, Washington. Lockheed Martin Space Systems, based in Denver, is the prime contractor and built the spacecraft. Ball Aerospace Technologies Corp., of Boulder, Colo., built the HiRISE camera. Share This Article With Planet Earth
Related Links Mars Reconnaissance Orbiter Mars News and Information at MarsDaily.com Lunar Dreams and more
Telltale Tells Story Of Winds At Mars Phoenix Landing Site Aarhus, Germany (SPX) Sep 17, 2009 Wind speeds and directions were measured for the first time in the Mars polar region using the Phoenix lander's Telltale instrument. Astronomers recorded Easterly winds of approximately 15-20 kilometers per hour during the Martian mid-summer. When autumn approached, the winds increased and switched round to come predominantly from the West. While these winds appeared to be dominated by tur ... read more |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2009 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement |