Drilling into Mars with Lasers by Erin Gibbons, Student Collaborator at McGill University Pasadena CA (JPL) Mar 23, 2022
Perseverance is adding a pop of color to Mars' regular repertoire: purple. The color palette of Mars' surface is one of muted hues. Burnt orange tones reflect the iron-bearing minerals that have rusted under an oxidizing atmosphere while soft greys characterize the un-rusted parent rock. However, over the past year we have seen prominent patches of purple peppered atop the rocks. The patches range from thin veneers to thick splotches and generally have a smooth, dull texture. Other Mars rovers, like Curiosity and Opportunity, have also observed purple-colored rocks, but not with this kind of splotchy texture and certainly not at such an abundance. We are keen to understand what these enigmatic rock coatings reveal about the history of Jezero. Did they form when ancient waters reacted with the rocks? Or did they form through millions of years of dust accumulation and cementation on an already arid world? We need more details about their make-up to be sure. This was precisely the focus of a specialized experiment that I helped draft on Friday, March 11 (sol 377). My role on the mission is to help operate the SuperCam instrument, which can use a laser beam to "zap" rocks and determine their chemistry. The zapping process is very intense. Upon impact, the laser heats the rock to ~18,000F (10,000C), vaporizing a small amount of material and converting it into a plasma. When the laser stops firing, the plasma cools and emits radiation at wavelengths that correspond to the chemical constituents of the vaporized material. We record this radiation and use it to interpret what the rocks are made of. An added benefit of this technique is that we can use the vaporization to effectively drill into a target: by repeatedly firing the laser on the same location, we vaporize increasingly more material and penetrate deeper, allowing us to study the interior. To learn about the purple patches on Jezero's rocks, we aimed the laser at a small patch and commanded it to fire 150 times (5x more than our typical operation!). The goal is to vaporize through the purple material and into the rock below, thereby revealing how the chemistry changes between the two layers. Analyses like these are extremely small - our 'drill' hole will be less than 1 mm deep - but could reveal clues about the environmental evolution in Jezero crater as a whole. Understanding how and when these purple coatings formed will help unravel how Jezero transitioned from a lake to a dustbowl.
NASA's Perseverance rover hightails it to Martian Delta Pasadena CA (JPL) Mar 19, 2022 The rover's self-driving capabilities will be put to the test this month as it begins a record-breaking series of sprints to its next sampling location. NASA's Perseverance Mars rover is trying to cover more distance in a single month than any rover before it - and it's doing so using artificial intelligence. On the path ahead are sandpits, craters, and fields of sharp rocks that the rover will have to navigate around on its own. At the end of the 3-mile (5-kilometer) journey, which began March 14 ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |