Deciphering the fluid floorplan of a planet by Staff Writers Washington DC (SPX) May 19, 2017
An assessment of ancient drainage systems on Earth, Mars and Titan provides new insights into the topography-generating mechanisms on planetary bodies. The results illustrate the diverse geological processes affecting these bodies and their river networks. The movement of liquids such as water across a planetary surface forms rivers, signatures of which can be seen even long after the liquid has disappeared - as with ancient riverbeds formed by water on Mars, for example. Studying these systems can provide valuable insights into the long-term evolution of a planetary body's topography, as the layout of the drainage network depends on whether it formed before, after or at the same time as the topology. Planetary processes that affect the entire body, such as thermal expansion and contraction, can create "long-wavelength" topographic features that river flow directions will typically correspond with. But planetary bodies may also exhibit "short-wavelength" features such as mountains and volcanic arcs that divert rivers away from the long-wavelength path. In such cases, downstream flow directions of rivers are not particularly well correlated with the large-scale landscape topography. Benjamin A. Black et al. compared drainage patterns on Earth, Mars and Titan with the short- and long-wavelength features by developing and analyzing two new topographic metrics. Their technique reveals that drainage systems match better with long-wavelength topography on Titan and Mars than on Earth, where the short-wavelength features dominate. The authors conclude that this is because Earth exhibits active plate tectonics, which continuously generate new short-wavelength features. The utility of these analyses for understanding the geologic history of planetary bodies is highlighted in an accompanying Perspective by Devon Burr.
Washington DC (SPX) May 17, 2017 Heavy rain on Mars reshaped the planet's impact craters and carved out river-like channels in its surface billions of years ago, according to a new study published in Icarus. In the paper, researchers from the Smithsonian Institution and the Johns Hopkins University Applied Physics Laboratory show that changes in the atmosphere on Mars made it rain harder and harder, which had a similar effect o ... read more Related Links American Association for the Advancement of Science Mars News and Information at MarsDaily.com Lunar Dreams and more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |