Clays, not water, are likely source of Martian lakes by Agency Writers Pasadena CA (JPL) Jul 30, 2021
Where there's water, there's life. That's the case on Earth, at least, and also why scientists remain tantalized by any evidence suggesting there's liquid water on cold, dry Mars. The Red Planet is a difficult place to look for liquid water: While water ice is plentiful, any water warm enough to be liquid on the surface would last for only a few moments before turning into vapor in Mars' wispy air. Hence the interest generated in 2018, when a team led by Roberto Orosei of Italy's Istituto Nazionale di Astrofisica announced they had found evidence of subsurface lakes deep below the ice cap at Mars' south pole. The evidence they cited came from a radar instrument aboard the ESA (European Space Agency) Mars Express orbiter. Radar signals, which can penetrate rock and ice, change as they're reflected off different materials. In this case, they produced especially bright signals beneath the polar cap that could be interpreted as liquid water. The possibility of a potentially habitable environment for microbes was exciting. But after taking a closer look at the data, along with experiments in a cold laboratory here on Earth, some scientists now think clays, not water, might be creating the signals. In the past month, a trio of new papers have unraveled the mystery - and may have dried up the lakes hypothesis.
A Scientific Ecosystem Gatherings like these provide an opportunity to test new theories and challenge each other's perspectives. "Communities can generate their own little scientific ecosystems," said Jeffrey Plaut of NASA's Jet Propulsion Laboratory, one of the scientists who traveled to the conference. He's also the co-principal investigator, along with Orosei, of the instrument behind the intriguing radar signals, called MARSIS, or the Mars Advanced Radar for Subsurface and Ionospheric Sounding. "These communities can be self-sustaining," he continued, "because you bounce a question off someone and maybe a year or two later they help you figure out an answer." Lots of talk centered on the subsurface lakes. How much heat would it take to keep water liquid under all that ice? Could brine be lowering the freezing point of the water enough to keep it liquid? Of course, it wouldn't be the first time an exciting water-related hypothesis set off a flurry of investigations. In 2015, NASA's Mars Reconnaissance Orbiter found what looked like streaks of damp sand running down slopes, a phenomenon called "recurring slope lineae." But repeated observations using the spacecraft's HiRISE - or High-Resolution Imaging Science Experiment - camera have since revealed this is more likely the result of sand flows. A paper released earlier this year found many recurring slope lineae after a global dust storm on Mars in 2018. The finding suggested that dust settling on slopes triggers sand flows, which, in turn, expose the darker subsurface materials that give the lineae their distinctive coloration. As with the damp-sand hypothesis, several scientists began thinking up ways to test the subsurface-lakes hypothesis. "There was a feeling that we should try to address this," said Isaac Smith of York University in Toronto, who organized the conference in Ushuaia and led the most recent study showing that clays can explain the observations.
Too Cold for Lakes Two separate teams of scientists then analyzed the radar signals to determine whether anything else could be producing those signals. Carver Bierson of ASU completed a theoretical study suggesting several possible materials that could cause the signals, including clays, metal-bearing minerals, and saline ice. But York University's Isaac Smith, knowing that a group of clays called smectites were present all over Mars, went further in a separate, third paper: He measured smectite properties in a lab. Smectites look like ordinary rock but were formed by liquid water long ago. Smith put several smectite samples into a cylinder designed to measure how radar signals would interact with them. He also doused them with liquid nitrogen, freezing them to minus 58 degrees Fahrenheit (minus 50 degrees Celsius) - close to what they would be at the Martian south pole. "The lab was cold," Smith said. "It was winter in Canada at the time, and pumping liquid nitrogen into the room made it colder. I was bundled up in a hat, jacket, gloves, scarf, and a mask because of COVID-19. It was pretty uncomfortable." After freezing the clay samples, Smith found their response nearly perfectly matched the MARSIS radar observations. Then, he and his team checked for clays present on Mars near those radar observations. They relied on data from MRO, which carries a mineral mapper called the Compact Reconnaissance Imaging Spectrometer, or CRISM. Bingo. While CRISM can't peer through ice, Smith found smectites scattered in the vicinity of the south pole's ice cap. Smith's team demonstrated that frozen smectite can make the reflections - no unusual amounts of salt or heat are required - and that they're present at the south pole. There's no way to confirm what the bright radar signals are without landing at Mars' south pole and digging through miles of ice. But the recent papers have offered plausible explanations that are more logical than liquid water. "In planetary science, we often are just inching our way closer to the truth," Plaut said. "The original paper didn't prove it was water, and these new papers don't prove it isn't. But we try to narrow down the possibilities as much as possible in order to reach consensus."
'Lakes' under Mars' south pole: A muddy picture? Tempe AZ (SPX) Jul 05, 2021 Two research teams, using data from the European Space Agency's Mars Express orbiter, have recently published results suggesting that what were thought to be subsurface lakes on Mars may not really be lakes at all. In 2018, scientists working with data from the Mars Express orbiter announced a surprising discovery: Signals from a radar instrument reflected off the red planet's south pole appeared to reveal a liquid subsurface lake. Several more such reflections have been announced since then. ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |