Mars Exploration News  
Major Milestone For Detecting Life On Mars

This image shows Dr Steele (foreground) and Dr Maule undertaking genetic (PCR) and Microarray analysis at Jotun springs Svalbard. The long-term aim of the project is to fully characterize the geology and biology of the Bockfjorden area, to understand the role of biology in the formation and weathering of carbonate deposits that are the only known terrestrial analogue to those found in Martian meteorites.
Washington DC (SPX) Sep 09, 2004
"To detect life on Mars, we have to devise instruments to recognize it and design them in such a way to get them to the Red Planet most efficiently," said Dr. Andrew Steele of the Carnegie Institution's Geophysical Laboratory, a member of an international team* designing devices and techniques to find life on Mars.

"We've passed a major milestone. We successfully tested an integrated Mars life-detection strategy for the first time and showed that if life on Mars resembles life on Earth at all, we'll be able to find even a single-cell," he remarked.

Steele is part of the interdisciplinary, international Arctic Mars Analogue Svalbard Expedition (AMASE) team, which is creating a sampling and analysis strategy that could be used for future Mars missions where real-time decision-making on the planet surface will be needed to search for signs of life.

Their two-stage strategy involves an initial analysis of the surface to find good target sites and then subsequent collection and analysis protocols to study the samples.

Because its geology is much like Mars, this year's AMASE team just completed a two-week fieldwork expedition in the challenging environment of Bockfjorden on the Norwegian island of Svalbard, which at close to 80o N has the world's northern-most hot springs above sea level.

The AMASE team, led by Dr. Hans Amundsen of Physics of Geological Processes (PGP), University of Oslo, Norway, deployed a suite of life-detection instruments in the frigid Arctic environment, including two spectroscopic instruments deployed by Dr. Pamela Conrad (of JPL and a Carnegie visiting investigator), and Dr. Arthur Lane (of JPL).

The instruments are highly sensitive to certain organic and mineralogical markers, or fingerprints, and have the capacity to identify local "hot spots," which are likely to be good targets for finding life.

These instruments were tested on hot-spring deposited carbonate terraces containing rock-dwelling (endolithic) bacteria, and within lava conduits on the Sverrefjell volcano. This volcano is currently the nearest terrestrial analogue to the processes that produced features (Carbonate rosettes) that have been found in the Martian meteorite ALH84001.

The Carnegie team** led by Dr. Steele, deployed a suite of specially adapted off-the-shelf instruments to rapidly detect and characterize low levels of microbiota. The results of the tests can be used for independent validation, and to cross check among the instruments for greater information than any instrument can yield on its own.

Field analysis also allows real-time understanding of the environment, thus permitting the scientists to gather pertinent samples and test hypothesis with minimal sample disturbance.

The suite of instruments included standard genetic techniques to identify and characterize bacterial populations (Polymerase Chain Reaction or PCR); a highly sensitive instrument to detect cell wall components (a PTS unit, which was developed by Charles River, and Norm Wainwright of MBL); an instrument to measure cellular activity by analyzing the flux of the energy-storing molecule ATP; and most significantly, protein microarrays.

Protein microarrays are capable of testing for the presence of many hundreds or even thousands of molecules simultaneously. These molecules are not limited to large proteins or cells--smaller molecules i.e., amino acids and nucleotides, the building blocks of life on Earth, can also be found.

The Carnegie team has pioneered the use of this technology, principally for life-detection for Mars missions, and has recently been advocating its use in astronaut health and environmental monitoring for long-duration human space flight.

"This expedition marks the first time these arrays have been used in the field," commented Dr. Jake Maule of Carnegie, who was responsible for this aspect of the research. Initial results indicate that the team was able to maintain sterile conditions and that the positive results from the protein arrays correlate with PCR, PTS and ATP analysis, as well as the spectroscopic techniques deployed by JPL.

Samples are currently being tested further in the Carnegie labs to verify the field data, and additional expeditions are planned to refine the strategy, technology, and remote operation over the next three years.

The long-term aim of the project is to fully characterize the geology and biology of the Bockfjorden area, to understand the role of biology in the formation and weathering of carbonate deposits that are the only known terrestrial analogue to those found in Martian meteorites. This project will also allow verification of sample acquisition and analysis in simulations at Svalbard, and future missions to Mars and Europa.

Related Links
Carnegie Institution
Mars Rovers at JPL
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Searching For Scarce Life
by Henry Bortman for Astrobiology Magazine
Moffett Field CA (SPX) Sep 02, 2004
NASA's Spirit and Opportunity rovers continue to inch their way across the desert-like terrain of Mars. Meanwhile, back on Earth, group of scientists is preparing to send Zoe, a prototype of a newer rover, on a trek across the Chilean desert. Spirit and Opportunity are searching for signs of water; Zoe will search for signs of life.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.