Mars Exploration News  
Case For Life On Mars Withstands Criticisms As Support Grows

A rocky argument about life on Mars
Houston - Feb. 26, 2001
Researchers who stunned the world in 1996 with the announcement that a Martian meteorite contained evidence of ancient life on the red planet have released new evidence that strengthens their original hypothesis and allays many of the criticisms leveled at the first paper.

In this latest paper, published in the scientific journal Precambrian Research Feb. 17, two additional Martian meteorites were examined - Nakhla and Shergotty, 1.3 billion and 165 to 175 million years old, respectively. Both younger meteorites showed the same evidence of microfossils and other remnants of early life as the original meteorite, the 4.5-billion-year-old ALH84001.

"If the features observed in the two younger Martian meteorites are confirmed to have a biogenic origin, life may have existed on Mars from 3.9 billion years ago to as recently as 165 to 175 million years ago," said Everett K. Gibson, a geochemist at the NASA Johnson Space Center in Houston and the senior author on the paper.

Clusters of very small spheres found in the two younger meteorites are very similar to those seen in bacteria-containing samples from deep beneath the Earth's surface in the Columbia River Basalts in eastern Washington.

Whether or not these sphere-like structures are true biomarkers has yet to be determined, but the fact that they are embedded in or coated by clays that are clearly of Martian origin suggests that they too were formed on Mars.

Studies using a transmission electron microscope have provided further evidence of fossils in the original Martian meteorite, ALH84001. This evidence is in the form of tiny magnetite crystals, identical to those used by aqueous bacteria on Earth as compasses to find food and energy.

Magnetite (Fe3O4) is produced inorganically on Earth, but the magnetite crystals produced by magnetotactic bacteria are different � they are chemically pure and defect-free, with a distinct size and shape. Magnetotactic bacteria arrange these magnetite crystals in chains within their cells.

Additional studies showed that a substantial portion of the hydrocarbons found in the meteorites were in them when they left Mars and are not the result of terrestrial contamination.

There is also strong evidence that most of the carbonates in all three meteorites was formed at a time when Mars was warmer and wetter - an environment much more conducive to life than the current surface of Mars.

Terrestrial contamination of extraterrestrial samples is an issue not only with these meteorites, according to the authors, but one that is being studied in relation to the future return of Martian samples to Earth.

"It's clear that we need to better understand the biosignatures of terrestrial and extraterrestrial samples so that when Martian samples are eventually brought back to Earth, we can determine the presences or absence of life with certainty," Gibson said. "However, if water exists beneath the Martian surface, why shouldn�t life be present today on Mars?"

The other authors of this work, which was funded by NASA�s Exobiology Program and NASA's Astrobiology Institute, are David S. McKay of JSC; Kathie L. Thomas-Keprta, Susan J. Wentworth, and Mary Sue Bell of Lockheed Martin at JSC; Frances Westall, a National Research Council Fellow at the Lunar & Planetary Institute in Houston; Andrew Steele and Jan Toporski of the University of Portsmouth, England; and Christopher S. Romanek of the Savannah River Ecology Laboratory. Of these, Gibson, McKay, Thomas-Keprta and Romanek were authors of the original paper on the subject.

Related Links
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Scientists Find Evidence of Ancient Microbial Life on Mars
Moffett Field - Feb. 26, 2001
An international team of researchers has discovered compelling evidence that the magnetite crystals in the martian meteorite ALH84001 are of biological origin. The researchers found that the magnetite crystals embedded in the meteorite are arranged in long chains, which they say could have been formed only by once-living organisms. Their results are reported in the Feb. 27 Proceedings of the National Academy of Sciences.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.