So Fit for Mars It's Like Being There by Staff Writers Paris (ESA) Mar 01, 2019
Rovers are versatile explorers on the surface of other planets, but they do need some training before setting off. A model of Rosalind Franklin rover that will be sent to Mars in 2021 is scouting the Atacama Desert, in Chile, following commands from mission control in the United Kingdom, over 11 000 km away. The ExoFiT field campaign simulates ExoMars operations in every key aspect. During the trial, the rover drove from its landing platform and targets sites of interest to sample rocks in the Mars-like landscapes of the Chilean desert. ESA's human and robotic exploration director, David Parker, explains "we call these tests 'ExoFit' - meaning ExoMars-like Field Testing. The results will help us prepare the real Rosalind Franklin rover for the challenge of safe operation far across the Solar System." The team behind the exercise, a mix of scientists and engineers, is simulating all the challenges of a real mission on the Red Planet, including communication delays, local weather conditions and tight deadlines.
ExoFiT rover voyage "We are continuously working against the clock as you need to take into account signals from Mars take between 4 and 24 minutes to arrive at Earth while blasts of wind might cover the rover's solar panels with dust, and that we only have a few hours to decide what the rover should do next," adds Juan. The campaign started on 18 February and will run until 1 March. This is the first time that ESA's European Centre for Space Applications and Telecommunications (ECSAT), in Harwell, UK, is acting as a mission control. With over 60 people from different space and scientific organisations involved, "it is all about getting the teams to practice with real mission issues. We are learning how to teleoperate a rover in the field and to make decisions in the most efficient way," says Lester Waugh, ExoFiT mission manager from Airbus.
A rover on the field, scientists in the blind As it departed from the 'landing site' in a remote barren area, the first thing this prototype of ExoMars did was share a panoramic image and its location coordinates with mission control. Scientists in the UK must take decisions on the next steps with the little information they have - a combination of the data transmitted by the rover and satellite images of the terrain. "We only see what the rover sends us and we cannot rely on any other real-time information," explains lead mission scientist Matt Balme, a planetary geologist from The Open University. On every martian day, known as sol in the planetary jargon, scientists analyse the data they receive and establish a whole plan for the next day in just a few hours. "It is a logistical challenge, and the planning cycle is quite stressful," says Matt. The ExoFiT teams in the UK set the exploration path and activities for the rover, which travels at a speed of two centimeters per second avoiding rocks and overcoming slopes. Drilling into ancient rocks is an important part of the trial. "Just like we would do on Mars, we want to understand the geological history of the area and look for signs of life," says Matt. ExoFiT stands for ExoMars-like Field Testing, and it is an essential step to improving European robotic operations not only for ExoMars, but also for future missions aiming to return soil from the Red Planet, such as the Mars Sample Return mission.
ESA's Mars rover has a name - Rosalind Franklin Paris (ESA) Feb 08, 2019 The ExoMars rover that will search for the building blocks of life on the Red Planet has a name: Rosalind Franklin. The prominent scientist behind the discovery of the structure of DNA will have her symbolic footprint on Mars in 2021. A panel of experts chose 'Rosalind Franklin' from over 36 000 entries submitted by citizens from all ESA Member States, following a competition launched by the UK Space Agency in July last year. The ExoMars rover will be the first of its kind to combine the cap ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |