Mars Exploration News  
MARSDAILY
Small Troughs Growing on Mars May Become 'Spiders'
by Staff Writers
Pasadena CA (JPL) Dec 22, 2016


These five images from the HiRISE camera on NASA's Mars Reconnaissance Orbiter show different Martian features of progressively greater size and complexity, all thought to result from thawing of seasonal carbon dioxide ice that covers large areas near Mars' south pole during winter. Image courtesy NASA/JPL-Caltech/Univ. of Arizona. For a larger version of this image please go here.

Erosion-carved troughs that grow and branch during multiple Martian years may be infant versions of larger features known as Martian "spiders," which are radially patterned channels found only in the south polar region of Mars.

Researchers using NASA's Mars Reconnaissance Orbiter (MRO) report the first detection of cumulative growth, from one Martian spring to another, of channels resulting from the same thawing-carbon-dioxide process believed to form the spider-like features.

The spiders range in size from tens to hundreds of yards (or meters). Multiple channels typically converge at a central pit, resembling the legs and body of a spider. For the past decade, researchers have checked in vain with MRO's High Resolution Imaging Science Experiment (HiRISE) camera to see year-to-year changes in them.

"We have seen for the first time these smaller features that survive and extend from year to year, and this is how the larger spiders get started," said Ganna Portyankina of the University of Colorado, Boulder. "These are in sand-dune areas, so we don't know whether they will keep getting bigger or will disappear under moving sand."

Dunes appear to be a factor in how the baby spiders form, but they may also keep many from persisting through the centuries needed to become full-scale spiders. The amount of erosion needed to sculpt a typical spider, at the rate determined from observing active growth of these smaller troughs, would require more than a thousand Martian years. That is according to an estimate by Portyankina and co-authors in a recent paper in the journal Icarus. One Martian year lasts about 1.9 Earth years.

"Much of Mars looks like Utah if you stripped away all vegetation, but 'spiders' are a uniquely Martian landform," said Candice Hansen of the Planetary Science Institute, Tucson, Arizona, a co-author of the report.

Carbon-dioxide ice, better known as "dry ice," does not occur naturally on Earth. On Mars, sheets of it cover the ground during winter in areas near both poles, including the south-polar regions with spidery terrain. Dark fans appear in these areas each spring.

Hugh Kieffer of the Space Science Institute in Boulder put those factors together in 2007 to deduce the process linking them: Spring sunshine penetrates the ice to warm the ground underneath, causing some carbon dioxide on the bottom of the sheet to thaw into gas. The trapped gas builds pressure until a crack forms in the ice sheet. Gas erupts out, and gas beneath the ice rushes toward the vent, picking up particles of sand and dust. This erodes the ground and also supplies the geyser with particles that fall back to the surface, downwind, and appear as the dark spring fans.

This explanation has been well accepted, but actually seeing a ground-erosion process that could eventually yield the spider shapes proved elusive. Six years ago, researchers using HiRISE reported small furrows appearing on sand dunes near Mars' north pole at sites where eruptions through dry ice had deposited spring fans. However, those furrows in the far north disappear within a year, apparently refilled with sand.

The newly reported troughs near the south pole are also at spring-fan sites. They have not only persisted and grown through three Mars years so far, but they also formed branches as they extended. The branching pattern resembles the spidery terrain.

"There are dunes where we see these dendritic [or branching] troughs in the south, but in this area, there is less sand than around the north pole," Portyankina said. "I think the sand is what jump starts the process of carving a channel in the ground."

Harder ground lies beneath the sand. Forming a spider may require ground soft enough to be carved, but not so loose that it refills the channels, as in the north. The new research sheds light on how carbon dioxide shapes Mars in unearthly ways.

MRO began orbiting Mars in 2006. "The combination of very high-resolution imaging and the mission's longevity is enabling us to investigate active processes on Mars that produce detectable changes on time spans of seasons or years," said MRO Deputy Project Scientist Leslie Tamppari of NASA's Jet Propulsion Laboratory, Pasadena, California. "We keep getting surprises about how dynamic Mars is."

"Present-Day Erosion of Martian Polar Terrain by the Seasonal CO2 Jets," Ganna Portyankina, Candice J. Hansen and Klaus-Michael Aye, 2017 Jan. 15, Icarus


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Mars Reconnaissance Orbiter
Mars News and Information at MarsDaily.com
Lunar Dreams and more






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
MARSDAILY
HiRISE: 45,000 Mars Orbits and Counting
Tucson AZ (SPX) Mar 28, 2016
True to its purpose, NASA's Mars Reconnaissance Orbiter, or MRO, the spacecraft that began orbiting Mars a decade ago, has delivered huge advances in knowledge about the Red Planet. According to NASA's Jet Propulsion Laboratory, MRO has revealed in unprecedented detail a planet that held diverse wet environments billions of years ago and remains dynamic today. MRO carries, among other inst ... read more


MARSDAILY
Lunar sonic booms

India Inc joins hands to bid for moon mission

TeamIndus signs contract with ISRO for lunar mission

Moonwalker Buzz Aldrin stable after South Pole health scare

MARSDAILY
Chinese missile giant seeks 20% of a satellite market

China-made satellites in high demand

Space exploration plans unveiled

China launches 4th data relay satellite

MARSDAILY
Station crew get special delivery from Virginia

Orbital cargo ship arrives at space station

New Instrument on ISS to Study Ultra-Cold Quantum Gases

Two Russians, one American blast off to ISS

MARSDAILY
Juno Captures Jupiter 'Pearl'

Juno Mission Prepares for December 11 Jupiter Flyby

Research Offers Clues About the Timing of Jupiter's Formation

New Perspective on How Pluto's "Icy Heart" Came to Be

MARSDAILY
Cassini offers a crash course in ring world orbital mechanics

Saturn's bulging core implies moons younger than thought

Cassini Makes First Ring-Grazing Plunge

Cassini Beams Back First Images from New Orbit

MARSDAILY
There's a jet stream in our core

Space-based lidar shines new light on plankton

Revolutions in understanding the ionosphere, Earth's interface to space

Researchers dial in to 'thermostat' in Earth's upper atmosphere

MARSDAILY
Spacewalk for Thomas Pesquet at ISS

NASA's Exo-Brake 'Parachute' to Enable Safe Return for Small Spacecraft

Trump sits down with tech execs, including critics

Trump sits down with tech execs, including critics

MARSDAILY
Astronomers discover dark past of planet-eating 'Death Star'

Microlensing Study Suggests Most Common Outer Planets Likely Neptune-mass

Are planets like those in 'Star Wars

Exciting new creatures discovered on ocean floor









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.