Similar-Looking Ridges on Mars Have Diverse Origins by Staff Writers Pasadena CA (JPL) Jan 27, 2017
Thin, blade-like walls, some as tall as a 16-story building, dominate a previously undocumented network of intersecting ridges on Mars, found in images from NASA's Mars Reconnaissance Orbiter. The simplest explanation for these impressive ridges is that lava flowed into pre-existing fractures in the ground and later resisted erosion better than material around them. A new survey of polygon-forming ridges on Mars examines this network in the Medusae Fossae region straddling the planet's equator and similar-looking networks in other regions of the Red Planet. "Finding these ridges in the Medusae Fossae region set me on a quest to find all the types of polygonal ridges on Mars," said Laura Kerber of NASA's Jet Propulsion Laboratory, Pasadena, California, lead author of the survey report published this month in the journal Icarus. The pattern is sometimes called boxwork ridges. Raised lines intersect as the outlines of multiple adjoining rectangles, pentagons, triangles or other polygons. Despite the similarity in shape, these networks differ in origin and vary in scale from inches to miles.
Small and Large Examples At the other end of the size scale, ridges outline several rectangles each more than a mile (more than 2 kilometers) wide at a location called "Inca City" near Mars' south pole. These may have resulted from impact-related faults underground, with fractures filled by rising lava that hardened and was later exposed by erosion. "Polygonal ridges can be formed in several different ways, and some of them are really key to understanding the history of early Mars," Kerber said. "Many of these ridges are mineral veins, and mineral veins tell us that water was circulating underground." Polygonal ridges in the Nilosyrtis Mensae region of northern Mars may hold clues about ancient wet, possibly warm environments. Examples of them found so far tend to be in the same areas as water-related clues such as minerals that form in hot springs, clay-mineral layers and channels carved by ancient streams. A larger sample is needed to test this hypothesis.
Volunteers Sought "We're asking for volunteers to search for more polygonal ridges," she said. Finding as-yet-unidentified polygonal ridges in CTX images could improve understanding about their relationship to other features and also will help guide future observations with the High Resolution Imaging Science Experiment (HiRISE) camera to reveal details of the ridge networks. This citizen-science program, called Planet Four: Ridges, began Jan. 17 on a platform released by the Zooniverse, which hosts dozens of projects that enlist people worldwide to contribute to discoveries in fields ranging from astronomy to zoology. More information is available here.
Related Links Mars Reconnaissance Orbiter Mars News and Information at MarsDaily.com Lunar Dreams and more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |