Free Newsletters - Space - Defense - Environment - Energy
..
. Mars Exploration News .




MARSDAILY
Scientists find a martian igneous rock that is surprisingly Earth-like
by Staff Writers
Pasadena CA (JPL) Oct 01, 2013


Image of the martian rock "Jake Matijevic" obtained by Curiosity's Mast Camera. Credit: NASA/JPL-Caltech/MSSS.

During the nearly 14 months that it has spent on the red planet, Curiosity, the Mars Science Laboratory (MSL) rover, has scooped soil, drilled rocks, and analyzed samples by exposing them to laser beams, X-rays, and alpha particles using the most sophisticated suite of scientific instruments ever deployed on another planet. One result of this effort was evidence reported last March that ancient Mars could have supported microbial life.

But Curiosity is far more than a one-trick rover, and in a paper published today in the journal Science, a team of MSL scientists reports its analysis of a surprisingly Earth-like martian rock that offers new insight into the history of Mars's interior and suggests parts of the red planet may be more like our own than we ever knew.

The paper-whose lead author is Edward Stolper, Caltech's William E. Leonhard Professor of Geology, provost, and interim president-is one of five appearing in the journal with results from the analysis of data and observations obtained during Curiosity's first 100 martian days (sols). The other papers include an evaluation of fine- and coarse-grained soil samples and detailed analyses of the composition and formation process of a windblown drift of sand and dust.

"The results presented go beyond the question of habitability," says John Grotzinger, MSL project scientist and Caltech's Fletcher Jones Professor of Geology.

"Mars Science Laboratory also has a major mission objective to explore and characterize the geological environment at all scales and also the atmosphere. In doing this we learn about the fundamental physical and chemical properties that distinguish the terrestrial planets from each other and also what they share in common."

The paper by Stolper and his colleagues-including Caltech senior research scientist Michael B. Baker and graduate student Megan Newcombe-examines in detail a 50-centimeter-tall pyramid-shaped rock named "Jake_M" (after MSL surface operations systems chief engineer Jacob "Jake" Matijevic, who passed away two weeks after Curiosity's landing).

The rock was encountered by Curiosity a few weeks after it landed, during its slow drive across Gale Crater on the way toward the crater's central peak, Mount Sharp. Visual inspection of the dark gray rock suggested that it was probably a fine-grained basaltic igneous rock formed by the crystallization of magma near the planet's surface. The absence of obvious mineral grains on its essentially dust-free surface further suggested that it would have a relatively uniform (i.e., homogeneous) chemical composition.

For that reason, MSL's scientists decided it would be a good test case for comparing the results obtained by two of the rover's scientific instruments, the Alpha Particle X-ray Spectrometer (APXS) and ChemCam, both of which are used to measure the chemical compositions of rocks, sediments, and minerals.

The APXS analyses, however, produced some unanticipated results. Far from being similar in its chemical composition to the many martian igneous rocks analyzed by the Spirit and Opportunity rovers on the surface of Mars or to martian meteorites found on Earth, Jake_M is highly enriched in sodium and potassium, making it chemically alkaline.

Although Jake_M is very different from known martian rocks, Stolper and colleagues realized that it is very similar in its chemical composition to a relatively rare type of terrestrial igneous rock, known as a mugearite, which is typically found on ocean islands and in continental rift zones.

"We realized right away that although nothing like it had ever been found on Mars, Jake_M is similar in composition to terrestrial mugearites, which although uncommon are very well known to igneous petrologists who study volcanic rocks on Earth," Stolper says. "In fact, if this rock were found on Earth, we would be hard pressed, based on its elemental composition, to tell it was not an Earth rock."

However, he notes, "such rocks are so uncommon on Earth that it would be highly unlikely that, if you landed a spacecraft on Earth in a random location, the first rock you encountered within a few hundred meters of your landing site would be an alkaline rock like Jake_M."

On both Earth and Mars, basaltic liquids form by partial melting of rocks deep inside the planet. By analogy with terrestrial mugearites, Jake_M probably evolved from such a partial melt that cooled as it ascended toward the surface from the martian interior; as it cooled, crystals formed, and the chemical composition of the remaining liquid changed (just as, in the making of rock candy, a sugar-water solution becomes less sweet as it cools and sugar crystallizes from it).

"The minerals that crystallize have different elemental compositions than the melt and are either more dense or less dense than the liquid and thus tend to physically separate, that is, to settle to the bottom of the magma chamber or float to the top, causing the chemical composition of the remaining liquid to change," Baker explains.

The MSL team then modeled the conditions required to produce a residual liquid similar in composition to Jake_M by crystallization of plausible partial melts. From those results, they inferred that the cooling and crystallization that eventually produced Jake_M probably occurred at pressures of several kilobars, the equivalent of the pressure at a depth of a few tens of kilometers beneath the martian surface. The modeling also suggested-particularly by analogy with terrestrial mugearites-that the martian magmas were relatively rich in dissolved water.

According to Stolper, Baker, and their colleagues, Jake_M probably originated via the melting of a relatively alkali- and water-rich martian mantle that was different from the sources of other known martian basalts. Because the primitive martian mantle is believed to have been as much as two times richer in sodium and potassium than Earth's mantle, the researchers say that, in hindsight, it might not be surprising if alkaline magmas, which are so uncommon on Earth, are more common on Mars.

Moreover, Stolper adds, "there are many hypotheses for origin of alkaline magmas on Earth that are similar to Jake_M. Perhaps the most plausible is that regions deep in the mantle become enriched in alkalis by a process known as metasomatism, in which the chemical compositions of rocks are altered by the flow of water- and carbon-dioxide-rich fluids. The existence of Jake_M may be evidence that such processes also occur in the interior of Mars."

Intriguingly, the potassium-rich nature of many of the sedimentary rocks that have been analyzed by the MSL mission may turn out to reflect the presence of such a region enriched in alkalis in the mantle underlying Gale Crater.

However, he says, "with only one rock having this odd chemical composition, we don't want to get carried away. Is it a one-off, or is it a representative of an important class of igneous rocks from the Gale Crater region? Determining the answer to this will be an important goal for the ongoing MSL mission."

"The paper by Stolper et al. shows that the internal composition of Mars is more similar to Earth than we had thought and illustrates how even a single rock can provide insight into the evolution of the planet as a whole," Grotzinger says.

The work in the paper, "The Petrochemistry of Jake_M: A Martian Mugearite," was supported by grants from the National Science Foundation, the National Aeronautics and Space Administration, the Canadian Space Agency, and the Centre National d'Etudes Spatiales.

.


Related Links
California Institute of Technology
Mars News and Information at MarsDaily.com
Lunar Dreams and more






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





MARSDAILY
NASA Rover Inspects Pebbly Rocks at Martian Waypoint
Pasadena CA (JPL) Sep 30, 2013
NASA's Mars rover Curiosity has resumed a trek of many months toward its mountain-slope destination, Mount Sharp. The rover used instruments on its arm last week to inspect rocks at its first waypoint along the route inside Gale Crater. The location, originally chosen on the basis of images taken from NASA's Mars Reconnaissance Orbiter, paid off with investigation of targets that bear evid ... read more


MARSDAILY
China unveils its first and unnamed moon rover

Mission to moon will boost research and awareness

Mighty Eagle Improves Autonomous Landing Software With Successful Flight

Watch Out for the Harvest Moon

MARSDAILY
Chinese VP stresses peaceful use of space

China's space station to open for foreign peers

Last Days for Tiangong

China civilian technology satellites put into use

MARSDAILY
Unmanned cargo ship docks with orbiting Space Station

New space crew joins ISS on Olympic torch mission

Station Crew Readies for Cygnus' Sunday Arrival

American, two Russians take shortcut to space

MARSDAILY
New Horizons - Late in Cruise, and a Binary Ahoy

Pluto Science Conference Exceeds Expectations

SciTechTalk: Grab your erasers, there are more moons than we thought

NASA Hubble Finds New Neptune Moon

MARSDAILY
Cassini finds ingredient of household plastic on Saturn moon

Long-Stressed Europa Likely Off-Kilter at One Time

Massive storm pulls water and ammonia ices from Saturn's depths

Massive storm on Saturn throws water ice high in atmosphere

MARSDAILY
Japan takes issue with Google maps over islands: reports

Australia's new prototype vehicle to improve Earth observation satellites' accuracy

UCLA scientists explain the formation of unusual ring of radiation in space

Ultra-fast Electrons Explain Third Radiation Ring Around Earth

MARSDAILY
Tokyo gadget show offers glimpse of tomorrow

Astronauts Practice Launching in NASA's New Orion Spacecraft

"GRAVITY" is Almost Here

International Partnership Releases Space Exploration Benefits Paper

MARSDAILY
Astronomers create first cloud map of distant planet

How Engineers Revamped Spitzer to Probe Exoplanets

ESA selects SSTL to design Exoplanet satellite mission

Coldest Brown Dwarfs Blur Lines between Stars and Planets




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement