Mars Exploration News  
MARSDAILY
Santorini volcano, a new terrestrial analogue of Mars
by Staff Writers
Madrid, Spain (SPX) Jun 28, 2019

On the island of Santorini, basaltic rocks similar to those located by the Curiosity rover in the crater Gale de Marte have been found.

One of the great attractions of the island of Santorini, in Greece, lies in its spectacular volcanic landscape, which also contains places similar to those of Mars. A team of European and U.S. scientists has discovered it after analysing basaltic rocks collected in one of its coves.

The Greek island of Santorini is now one of the most popular tourist destinations in the Mediterranean, but 3,600 years ago it suffered one of the largest volcanic eruptions recorded in history. Among the material that has been exposed, scientists have now found rocks similar to those of Mars.

"In the Balos Cove -located to the south of the island - we have discovered basalts such as those that have been identified by the rovers on Mars and with properties similar to those of certain meteorites from the red planet and those of terrestrial rocks classified as Martian analogues," points out Ioannis Baziotis, a researcher at the Agricultural University of Athens and co-author of the study, recently published in Icarus journal.

More specifically, the authors have confirmed that this basaltic material is equivalent to that located by the Spirit and Curiosity rovers in the Gusev and Gale craters of the red planet, and that its chemical and mineralogical composition resembles that of genuinely Martian meteorites (olivine-phyric shergottites) and similar Martian samples included in The International Space Analogue Rockstore (ISAR), a collection of terrestrial rocks used to test and calibrate instruments that will fly on space missions.

"The basalts of this cove and other, similar ones that we have also found in two areas northeast of Santorini are quite abundant," explains Baziotis, "so they can serve as an accessible and low-cost resource for experiments, instead of using the rare and expensive olivine-phyric shergottites collected on Earth or material laboriously prepared from synthetic mixes".

"Optical microscopy and geochemical analyses show that the basalts of Balos Cove are viable analogues for characterising geological processes and chemical and mineralogical properties of materials present on the Martian surface," says another author, Anezina Solomonidou, a researcher at the European Space Astronomy Centre (ESAC) run by the European Space Agency (ESA) near Madrid.

"In addition -she adds-, this area of the island is easily accessible and offers excellent logistics for sampling, testing and calibration instruments, field training and other activities related to current and future Mars exploration."

Along with its tourist relevance, Santorini has thus become an excellent destination for comparative planet studies, a field which, according to Solomonidou, "plays an important role both in characterising geologically distant exotic worlds, such as planets and moons, and in better understanding our own planet."

Research Report: "Santorini volcano as a potential Martian analogue: The Balos Cove Basalts"


Related Links
FECYT - Spanish Foundation for Science and Technology
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MARSDAILY
A Rover for Phobos and Deimos
Le Bourget, France (SPX) Jun 21, 2019
Mars has two small moons, Phobos and Deimos. These are the target of the Japanese Martian Moons eXploration (MMX) mission, which also involves international partners. Scheduled for launch in 2024. it will enter Mars orbit in 2025, and return samples to Earth in 2029. The spacecraft will carry a German-French rover that will land on either Phobos or Deimos and explore the surface in detail for several months. The scientists hope to gain new insights into the formation and evolution of the solar sys ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MARSDAILY
Ions Beams and Atom Smashers Expose Secrets of Moon Rocks

Lunar Reconnaissance Orbiter marks 10 years mapping Moon

ESA testing lunar rescue device tested underwater at NASA's NEEMO 23

When the world stopped to watch Armstrong's moonwalk

MARSDAILY
Luokung and Land Space to develop control system for space and ground assets

Yaogan-33 launch fails in north China, Possible debris recovered in Laos

China develops new-generation rockets for upcoming missions

China's satellite navigation industry sees rapid development

MARSDAILY
UH Team Successfully Locates Incoming Asteroid

Tunguska inspires new, more optimistic asteroid predictions

NRL researchers find insights into the formation of the solar system in ancient comet dust

Hera asteroid mission's brain to be radiation-hard and failure-proof

MARSDAILY
Kuiper Belt Binary Orientations Support Streaming Instability Hypothesis

Study Shows How Icy Outer Solar System Satellites May Have Formed

Astronomers See "Warm" Glow of Uranus's Rings

Table salt compound spotted on Europa

MARSDAILY
"Bathtub rings" around Titan's lakes might be made of alien crystals

Cassini reveals new sculpting in Saturn rings

Researchers find ice feature on Saturn's giant moon

Giant planets and big data: What deep learning reveals about Saturn's storms

MARSDAILY
NASA helps warn of harmful algal blooms in lakes, reservoirs

TanDEM-X reveals glaciers in detail

Airbus built SEOSAT Ingenio is finished and ready for testing

Satellite observations improve earthquake monitoring, response

MARSDAILY
Soyuz capsule safely returns three space station crew members to Earth

Planetary Society's LightSail 2 Launched by Falcon Heavy

Hacker used $35 computer to steal restricted NASA data

Russian, North American astronauts return to earth

MARSDAILY
ALMA Pinpoints Formation Site of Planet Around Nearest Young Star

Planet Seeding and Panspermia

View of the Earth in front of the Sun

Most Comprehensive Search for Radio Technosignatures









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.