Rivers raged on Mars late into its history by Staff Writers Chicago IL (SPX) Mar 28, 2019
Long ago on Mars, water carved deep riverbeds into the planet's surface - but we still don't know what kind of weather fed them. Scientists aren't sure, because their understanding of the Martian climate billions of years ago remains incomplete. A new study by University of Chicago scientists catalogued these rivers to conclude that significant river runoff persisted on Mars later into its history than previously thought. According to the study, published March 27 in Science Advances, the runoff was intense - rivers on Mars were wider than those on Earth today - and occurred at hundreds of locations on the red planet. This complicates the picture for scientists trying to model the ancient Martian climate, said lead study author Edwin Kite, assistant professor of geophysical sciences and an expert in both the history of Mars and climates of other worlds. "It's already hard to explain rivers or lakes based on the information we have," he said. "This makes a difficult problem even more difficult." But, he said, the constraints could be useful in winnowing the many theories researchers have proposed to explain the climate. Mars is crisscrossed with the distinctive tracks of long-dead rivers. NASA's spacecraft have taken photos of hundreds of these rivers from orbit, and when the Mars rover Curiosity landed in 2012, it sent back images of pebbles that were rounded - tumbled for a long time in the bottom of a river. It's a puzzle why ancient Mars had liquid water. Mars has an extremely thin atmosphere today, and early in the planet's history, it was also only receiving a third of the sunlight of present-day Earth, which shouldn't be enough heat to maintain liquid water "Indeed, even on ancient Mars, when it was wet enough for rivers some of the time, the rest of the data looks like Mars was extremely cold and dry most of the time," Kite said. Seeking a better understanding of Martian precipitation, Kite and his colleagues analyzed photographs and elevation models for more than 200 ancient Martian riverbeds spanning over a billion years. These riverbeds are a rich source of clues about the water running through them and the climate that produced it. For example, the width and steepness of the riverbeds and the size of the gravel tell scientists about the force of the water flow, and the quantity of the gravel constrains the volume of water coming through. Their analysis shows clear evidence for persistent, strong runoff that occurred well into the last stage of the wet climate, Kite said. The results provide guidance for those trying to reconstruct the Martian climate, Kite said. For example, the size of the rivers implies the water was flowing continuously, not just at high noon, so climate modelers need to account for a strong greenhouse effect to keep the planet warm enough for average daytime temperatures above the freezing point of water. The rivers also show strong flow up to the last geological minute before the wet climate dries up. "You would expect them to wane gradually over time, but that's not what we see," Kite said. The rivers get shorter - hundreds of kilometers rather than thousands - but discharge is still strong. "The wettest day of the year is still very wet." It's possible the climate had a sort of "on/off" switch, Kite speculated, which tipped back and forth between dry and wet cycles. "Our work answers some existing questions but raises a new one. Which is wrong: the climate models, the atmosphere evolution models, or our basic understanding of inner solar system chronology?" he said.
Pathfinder Rover May Have Explored Edges of Early Mars Sea in 1997 Tucson AZ (SPX) Mar 15, 2019 NASA's first rover mission to Mars, the Pathfinder, imaged an extraterrestrial marine spillover landscape 22 years ago, according to a new paper by Planetary Science Institute Senior Scientist Alexis Rodriguez. The landing site is on the spillway of an ancient sea that experienced catastrophic floods released from the planet's subsurface and its sediments. This could potentially yield evidence of Martian habitability, said Rodriguez, lead author on "The 1997 Mars Pathfinder Spacecraft Landing Site ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |