Mars Exploration News  
Research Shows Liquid Water May Have Been On Mars Briefly

"On Earth, jarosite forms in acid mine drainage environments as sulphide minerals oxidize -- it has been found in Idaho or California, for example. It also forms while volcanic rocks are being altered by acidic, sulphur-rich fluids near volcanic vents. As such, jarosite formation is thought to need a wet, oxidizing and acidic environment." (File image of Elysium Mons by ESA's Mars Express - desktop versions available here)

Blacksburg VA (SPX) Oct 14, 2004
A Ph.D. student at Virginia Tech has research published this week in Nature that shows Mars probably had liquid water at some point, but likely for only a short time, geologically speaking.

Megan Elwood Madden, of Jacksonville, Ill., a graduate student in geosciences, along with Robert Bodnar, University Distinguished Professor and Clifton C. Garvin Professor of Geosciences, and Donald Rimstidt, professor of geosciences, all in the College of Science, published "Jarosite as an indicator of water-limited chemical weathering on Mars" in the Oct. 14 issue of Nature according to a press release from Nature.

NASA's Mars Rover Opportunity recently found the mineral jarosite and possibly gypsum on Mars' surface, further adding to the speculation that water existed there in the past because those minerals "generally form in a wet environment," according to a Nature news release.

It was already well known from previous Mars research and meteorites that basalt is likely a common rock type on Mars, Elwood Madden said. Scientists are interested in the history of water on Mars since life as we know it cannot survive without liquid water. Ice can be found on Mars today; however, liquid water likely froze or evaporated some time in the past.

Using a computer-modeling program that uses thermodynamic data to determine the types of minerals that form from reactions between rocks and water, Elwood Madden looked at the way basalts weather, or react with water, under the conditions found on Mars and used the results to interpret how jarosite and gypsum might have formed. "We predicted jarosite likely did form from a reaction of basalt with liquid water," Madden said.

"On Earth, jarosite forms in acid mine drainage environments as sulphide minerals oxidize -- it has been found in Idaho or California, for example. It also forms while volcanic rocks are being altered by acidic, sulphur-rich fluids near volcanic vents. As such, jarosite formation is thought to need a wet, oxidizing and acidic environment."

However, it is preserved only in arid regions. The reason, Elwood Madden and Rimstidt said, is that jarosite forms when only a small amount of reaction has occurred and completely decomposes if more water is available. "This shows that the reaction on Mars ran out of water," Elwood Madden said.

"Either there was not enough water to begin with or it disappeared quickly," Rimstidt said.

Elwood Madden, Bodnar, and Rimstidt showed "that the water in which the minerals formed either evaporated or soaked into the ground after a short time," according to Nature.

Because water is important for life, the discovery could have implications of how long water was present on Mars and the likelihood of finding living organisms there now. "There's probably no likelihood of living organisms today, but we can't say there wasn't enough water a long time ago," Rimstidt said.

As to how much water was on Mars, the researchers do not know if there was a great deal for a short time or a little for a longer period. However, they can say there was a geologically short window in which liquid water was present, suggesting there also was a limited time period when conditions may have been hospitable for life, Rimstidt said.

The researchers will present the results of their work in November at the Geological Society of America meeting in Denver.

Community
Email This Article
Comment On This Article

Related Links
Virginia Tech
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express
Mars News and Information at MarsDaily.com
Lunar Dreams and more



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Spirit Heading To 'Home Plate'
Pasadena CA (JPL) Jan 09, 2006
Last week Spirit completed robotic-arm work on "El Dorado." The rover used all three of its spectrometers plus the microscopic imager for readings over the New Year's weekend.









  • NASA plans to send new robot to Jupiter
  • Los Alamos Hopes To Lead New Era Of Nuclear Space Tranportion With Jovian Mission
  • Boeing Selects Leader for Nuclear Space Systems Program
  • Boeing-Led Team to Study Nuclear-Powered Space Systems

  • Apollo's Lunar Leftovers
  • New Moon Shot Not So Costly
  • Armstrong Reflects On A New Visions For Space Exploration
  • Sunny lunar mountain good site for base

  • Edwards SPADS Keeps An Eye On SpaceShipOne During X Prize Flights
  • Space Race 2: After The X Prize
  • Space Tourism Initiative Announces Trade-Only Space Tourism Summit
  • Space Race Pilots Wore CarbonX Flame-Resistant Flight Suits

  • New Horizons For Planetary Exploration
  • Outward To The Final Frontier Of Sol
  • Morning Planets Declare A New Dawn Sky
  • SWAP To Determine Where The Sun And Ice Worlds Meet

  • SiRF Joins iNavSat Consortium In Euro Galileo Concession Bid
  • Beware: Io Dust
  • Scientists Discover Ganymede Has A Lumpy Interior



  • Los Alamos Instrument Yields New Knowledge Of Saturn's Rings
  • Saturn Sightings: Tethys
  • Saturn's Perfect Storms
  • Saturn's Lanes Of Air Are Vast And Chaotic

  • Professor Puts New Spin On Quantum Computer Technology
  • Plastic Fantastic - Bringing Space Composites Down To Earth
  • Harris Introduces New Version Of InReality 3-D Visualization Software
  • New Skies Granted Authorization To Provide Services In Japan

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement