Mars Exploration News  
Phoenix Mars Lander Checking Soil Properties

The Robotic Arm of NASA's Phoenix Mars Lander released a sample of Martian soil onto a screened opening of the lander's Thermal and Evolved-Gas Analyzer (TEGA) during the 12th Martian day, or sol, since landing (June 6, 2008). TEGA did not confirm that any of the sample had passed through the screen. The Robotic Arm Camera took this image on Sol 12. Soil from the sample delivery is visible on the sloped surface of TEGA, which has a series of parallel doors. The two doors for the targeted cell of TEGA are the one positioned vertically, at far right, and the one partially open just to the left of that one. The soil between those two doors is resting on a screen designed to let fine particles through while keeping bigger ones from clogging the interior of the instrument. Each door is about 10 centimeters (4 inches) long. Image NASA/JPL-Caltech/University of Arizona/Max Planck Institute
by Staff Writers
Pasadena CA (JPL) Jun 08, 2008
The arm of NASA's Phoenix Mars Lander released a handful of clumpy Martian soil onto a screened opening of a laboratory instrument on the spacecraft Friday, but the instrument did not confirm that any of the sample passed through the screen.

Engineers and scientists on the Phoenix team assembled at the University of Arizona are determining the best approach to get some of that material into the instrument. Meanwhile, the team has developed commands for the spacecraft to use cameras and the Robotic Arm on Saturday to study how strongly the soil from the top layer of the surface clings together into clumps.

Images taken Friday show soil resting on the screen over an open sample-delivery door of Phoenix's Thermal and Evolved-Gas Analyzer, or TEGA, an instrument for identifying some key ingredients. The screen is designed to let through particles up to one-millimeter (0.04 inch) across while keeping out larger particles, in order to prevent clogging a funnel pathway to a tiny oven inside. An infrared beam crossing the pathway checks whether particles are entering the instrument and breaking the beam.

The researchers have not yet determined why none of the sample appears to have gotten past the screen, but they have begun proposing possibilities.

"I think it's the cloddiness of the soil and not having enough fine granular material," said Ray Arvidson of Washington University in St. Louis, the Phoenix team's science lead for Saturday and digging czar for the mission.

"In the future, we may prepare the soil by pushing down on the surface with the arm before scooping up the material to break it up, then sprinkle a smaller amount over the door," he said.

Another strategy under consideration is to use mechanical shakers inside the TEGA instrument differently than the five minutes of shaking that was part of the sample-receiving process on Friday. No activities for the instrument are planned for Saturday, while the team refines plans for diagnostic tests.

Phoenix's planned activities for Saturday include horizontally extending a trench where the lander dug two practice scoops earlier this week, and taking additional images of a small pile of soil that was scooped up and dropped onto the surface during the second of those practice digs.

"We are hoping to learn more about the soil's physical properties at this site," Arvidson said. "It may be more cohesive than what we have seen at earlier Mars landing sites."

The Phoenix mission is led by Peter Smith at the University of Arizona with project management at JPL and development partnership at Lockheed Martin, Denver. International contributions come from the Canadian Space Agency; the University of Neuchatel, Switzerland; the universities of Copenhagen and Aarhus, Denmark; Max Planck Institute, Germany; and the Finnish Meteorological Institute.

earlier related report
NASA Mars Lander Scoops First Soil Sample for Laboratory Analysis
NASA's Phoenix Mars Lander made its first dig into Martian soil for science studies and is poised to deliver the scoopful to a laboratory instrument on the lander deck.

The instrument will bake and sniff the soil to assess its volatile ingredients, such as water.

Commands were received by Phoenix Friday, June 6, for the spacecraft's Robotic Arm to dump the sample into an opened door on the instrument called the Thermal and Evolved-Gas Analyzer, or TEGA.

"It's looks like a good sample for us," said Peter Smith, Phoenix principal investigator at the University of Arizona, Tucson. "Over the next few days, and it may be as much as a week, the TEGA instrument will be analyzing this sample."

Phoenix's Robotic Arm collected the sample of clumpy, reddish material from the top 2 to 4 centimeters (0.8 to 1.6 inches) of surface material at a site informally named "Baby Bear" on the north side of the lander. In the past week, engineers had used the arm to collect two practice scoops adjacent to Baby Bear and dump those scoopfuls back onto the surface. They have prepared for years with simulations and versions of the arm on Earth.

"It's like being on a football team and having a pre-season that lasted five years, and now we're finally playing first game," said Matt Robinson, of NASA's Jet Propulsion Laboratory, Pasadena, Calif. He is the robotic arm flight software lead for the Phoenix team.

The move was calculated to get enough material to be sure to get some delivered into the instrument without inundating the instrument with unnecessary extra soil. "We're ecstatic that we got a quarter to a third of a scoopful," Robinson said.

The TEGA instrument will begin analyzing the sample for water and mineral content after it has analyzed a sample of the Martian atmosphere. Water can be bound to minerals, such as clays or carbonates, and it takes more heat to drive the water off some minerals than others. This is how the instrument can identify some minerals in the soil.

"We are particularly interested in minerals that are formed or altered by the action of liquid water in the soil," Smith said.

Community
Email This Article
Comment On This Article

Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
Watch the Science Briefings
Phoenix at LPL
Phoenix at JPL
Phoenix at NASA
Mars News and Information at MarsDaily.com
Lunar Dreams and more



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Mars lander Phoenix struggles with soil sample
Washington (AFP) June 8, 2008
A soil sample from the Martian arctic dug up by the Phoenix probe appears to be too firmly clumped to deliver any particles into the spacecraft's main test instrument, mission experts said.









  • Nuclear Power In Space - Part 2
  • Outside View: Nuclear future in space
  • Nuclear Power In Space

  • NASA Seeks Proposals For Lunar Science Research
  • Scientists Pioneer Method For Making Giant Lunar Telescopes
  • NASA seeks lunar surface concept proposals
  • Targeting A Lunar Bulls-Eye

  • MESSENGER Trajectory Mastermind Honored For Computation
  • House Committee Approves NASA Funding Bill
  • AIAA President Urges House To Pass NASA Authorization Act HR 6063
  • Space station gets big Japanese lab room

  • New Horizons Set To Cut Cross Saturn Orbit
  • New Horizon Tones Green On All Beacons As Long Cruise To Pluto Continues
  • New Horizons Crosses 9 AU
  • ASU Research Solves Solar System Quandary

  • The Little Red Spot Of Jupiter Has Lots Of Winds Blowing
  • New Red Spot Appears On Jupiter
  • Wandering Poles Leave Giant Scars On Europa's Icy Surface
  • Scientists Find Rings Of Jupiter Are Shaped In Shadow

  • New Details On Venusian Clouds Revealed
  • Venus Express Provides First Detection Of Hydroxyl In Atmosphere Of Venus
  • Key Molecule Found In Venus Atmosphere
  • Venus Express Reboots The Search For Active Volcanoes On Venus

  • Cassini Sees Collisions Of Moonlets Into Saturn F Ring
  • DLR Scientists Produce An Atlas Of Saturn's Moon Dione
  • Cassini Saturn Moon Maps Will Provide Guideposts For Future Explorers
  • DLR Scientists Produce An Atlas Of Saturn's Moon Dione

  • Paralysed man takes a walk in virtual world
  • Study finds best times for radio signals
  • Self-Repairing Aircraft Could Revolutionize Aviation Safety
  • Northrop Grumman Resonating Gyro Achieves 10 Million Operating Hours In Space

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement