Mars Exploration News  
Orbital Tweak Makes Odyssey More Sensitive In Martian Mineral Search

A panel of planetary scientists assembled by NASA recommended this year that Odyssey make the orbit change to get the best science return from the mission in coming years. The change will require shutting down the GRS' gamma-ray detector, while leaving the suite's neutron spectrometer and high-energy neutron detector in operation.
by Staff Writers
Tempe AZ (SPX) Oct 13, 2008
A six-minute rocket firing on September 30 has put NASA's Mars Odyssey spacecraft on track for a new orbit around the Red Planet. The change, part of a two-year extension for the mission, will give an ASU-operated instrument carried on Odyssey greater sensitivity for mapping Martian minerals.

The instrument is the Thermal Emission Imaging System (THEMIS), a multi-band heat-sensing camera operated by ASU's Mars Space Flight Facility.

"The orbital change lets THEMIS operate at its maximum potential," says Philip Christensen of ASU's School of Earth and Space Exploration, part of the College of Liberal Arts and Sciences. Christensen designed THEMIS and is the instrument's principal investigator. "In the months to come, we expect to see a steady increase in the camera's ability to detect and map minerals on the planet's surface."

Odyssey's orbit is synchronized with the Sun. For the five years before the Sept. 30 orbital maneuver, the local solar time on Mars was about 5 p.m. wherever the spacecraft was flying over as it made its dozen passes a day moving from north to south. Similarly, the local time was 5 a.m. under the spacecraft as it flew the south-to-north leg of each orbit.

Slow drift through time
The push from the Sept. 30 maneuver will gradually change that synchronization over the next year or so. Its effect is that the time of day on the ground when Odyssey passes overhead is now getting earlier by about 20 seconds per day. A follow-up maneuver, probably in late 2009 when the overpass time is between 2:30 and 3:00 p.m., will end the drift toward earlier times of day.

The 5 p.m./a.m. orbit was a compromise between THEMIS and the three-instrument Gamma Ray Spectrometer suite. For THEMIS, the time of day was usable but not optimal, while one of the GRS instruments, the gamma-ray detector, needed a late-afternoon orbit to avoid overheating.

The Gamma Ray Spectrometer suite made dramatic discoveries of water ice near the surface throughout most of high-latitude Mars, and provided the impetus for NASA's Phoenix Mars Lander mission. The gamma ray detector has also mapped the global distribution of many elements, such as iron, silicon and potassium. This was a high science priority for the first and second extensions of the Odyssey mission.

A panel of planetary scientists assembled by NASA recommended this year that Odyssey make the orbit change to get the best science return from the mission in coming years. The change will require shutting down the GRS' gamma-ray detector, while leaving the suite's neutron spectrometer and high-energy neutron detector in operation.

For THEMIS, the shift to a mid-afternoon orbit will boost its science data return. THEMIS works better when day-night temperature contrasts are stronger, which is the natural outcome of orbital passes earlier in the day.

Looking away
In addition, Odyssey's science team plans to begin occasionally aiming THEMIS away from the straight-down pointing used throughout the mission so far. This will allow THEMIS to fill in some gaps in earlier mapping. It will also permit the creation of some stereo, three-dimensional imaging.

When Odyssey began mapping Mars, the spacecraft had a 4 p.m. orbit. Then mission controllers deliberately let the orbit drift over the course of about a year to the 5 p.m. time so that the GRS instrument could operate.

Yet as Christensen explains, "Many of THEMIS' most significant scientific results have come from data collected during the first six months after we arrived at Mars in late 2001."

One important finding based on such early-mission THEMIS data was the recently announced discovery of chloride mineral deposits in the ancient southern highlands. These deposits - salt beds - are possible relics of a warmer and wetter epoch on Mars. Because salt beds are effective at preserving biological traces, scientists would like to examine these to determine what they can say about a Martian biosphere, past or present.

Says Christensen, "It'll be good to get back to an orbit where THEMIS works better."

NASA's Jet Propulsion Laboratory, Pasadena, manages the Odyssey mission for the NASA Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, built the orbiter.

Community
Email This Article
Comment On This Article

Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
Mars Odyssey
Mars News and Information at MarsDaily.com
Lunar Dreams and more



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Mars In Their Sights
Phoenix AZ (SPX) Feb 04, 2008
U.S. and Chinese students are taking aim at the Red Planet using an ASU-designed camera on a Mars-orbiting spacecraft. The target lies millions of miles away, but for the 22 high school students in the first-ever China Youth Space Academy, Mars is square in their sights.











  • Chandrayaan-1 Ready For First Indian Mission To Moon
  • Japan Maps Lunar Far Side Gravity Field
  • Moon Mission Is Not Expensive, Says ISRO
  • AGI And X PRIZE Foundation Partner For Moon Prize

  • First Second Generation Astronaut Pays Own Fare To Station
  • India Not Engaged In Space Race With China
  • Spinoff 2008 Highlights NASA Innovations In Everyday Life
  • NASA Selects ITT For Space Communications Network Services

  • Outer Solar System Not So Crowded
  • 1,000 Days On The Road To Pluto
  • NASA Spacecraft Ready To Explore Outer Solar System
  • Dawn Reaches It's First Anniversary

  • Studying A Giant Planet
  • Sharpening Up Jupiter
  • Mini-Sub For Small Spaces
  • Jupiter And Saturn Full Of Liquid Metal Helium

  • Venus Express Searching For Life On Earth
  • How Windy Is It On Venus
  • Measuring The Winds Of Venus
  • Closing In On Venus

  • The Ions And Isotopes Of Enceladus
  • Cassini Plans Doubleheader Flybys Of Saturn's Geyser Moon
  • Calculations Show Saturn's Rings May Be More Massive, Older
  • Saturn's Radio Broadcasters Mapped In 3D For First Time

  • MSV Awarded Patents For Next-Gen Satellite-Terrestrial Comms Network
  • Theory Explains Mysterious Nature Of Glass
  • Youngsters Flying High After Winning Top UK Space Competition
  • Clyde Space Delivers Battery Charge Controllers For RASAT

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement