Mars Exploration News  
MARSDAILY
New technique for finding life on Mars
by Staff Writers
Washington DC (SPX) Jan 19, 2018


Co-author I. Altshuler sampling permafrost terrain near the McGill Arctic research station, Canadian high Arctic.

Researchers demonstrate for the first time the potential of existing technology to directly detect and characterize life on Mars and other planets. The study, published in Frontiers in Microbiology, used miniaturized scientific instruments and new microbiology techniques to identify and examine microorganisms in the Canadian high Arctic - one of the closest analogs to Mars on Earth. By avoiding delays that come with having to return samples to a laboratory for analysis, the methodology could also be used on Earth to detect and identify pathogens during epidemics in remote areas.

"The search for life is a major focus of planetary exploration, but there hasn't been direct life detection instrumentation on a mission since the 70s, during the Viking missions to Mars," explains Dr Jacqueline Goordial, one of the study's authors.

"We wanted to show a proof-of-concept that microbial life can be directly detected and identified using very portable, low-weight, and low-energy tools."

At present, most instruments on astrobiology missions look for habitable conditions, small organic molecules and other "biosignatures" that generally could not be formed without life. However, these provide only indirect evidence of life. Moreover, current instruments are relatively large and heavy with high energy requirements. This makes them unsuitable for missions to Europa and Enceladus - moons of Jupiter and Saturn which, along with Mars, are the primary targets in the search for life in our solar system.

Dr Goordial, together with Professor Lyle Whyte and other scientists from Canada's McGill University, took a different approach: the use of multiple, miniature instruments to directly detect and analyze life. Using existing low-cost and low-weight technology in new ways, the team created a modular "life detection platform" able to culture microorganisms from soil samples, assess microbial activity, and sequence DNA and RNA.

To detect and characterize life on Mars, Europa and Enceladus, the platform would need to work in environments with extreme cold temperatures. The team therefore tested it at a remote site in a close analog on Earth: polar regions.

"Mars is a very cold and dry planet, with a permafrost terrain that looks a lot like what we find in the Canadian high Arctic," says Dr Goordial.

"For this reason, we chose a site about 900 km from the North Pole as a Mars analog to take samples and test our methods."

Using a portable, miniature DNA sequencing device (Oxford Nanopore MiniON), the researchers show for the first time that not only can the tool be used for examining environmental samples in extreme and remote settings, but that it can be combined with other methodology to detect active microbial life in the field. The researchers were able to isolate extremophilic microorganisms that have never been cultured before, detect microbial activity, and sequence DNA from the active microbes.

"Successful detection of nucleic acids in Martian permafrost samples would provide unambiguous evidence of life on another world," says Professor Whyte.

"The presence of DNA alone doesn't tell you much about the state of an organism, however - it could be dormant or dead, for example," adds Dr Goordial.

"By using the DNA sequencer with the other methodology in our platform, we were able to first find active life, and then identify it and analyze its genomic potential, that is, the kinds of functional genes it has."

While the team showed that such a platform could theoretically be used to detect life on other planets, it is not ready for a space mission just yet.

"Humans were required to carry out much of the experimentation in this study, while life detection missions on other planets will need to be robotic," says Dr Goordial.

"The DNA sequencer also needs higher accuracy and durability to withstand the long timescales required for planetary missions."

Nevertheless, Dr Goordial and her team hope this study will act as a starting point for future development of life detection tools.

In the meantime, the platform has potential applications here on Earth.

"The types of analyses performed by our platform are typically carried out in the laboratory, after shipping samples back from the field. We show that microbial ecology studies can now be done in real time, directly on site - including in extreme environments like the Arctic and Antarctic," says Dr Goordial.

This could be useful in remote and hard to sample areas, in cases where bringing samples back to the lab may change their composition, and for gaining information in real time - such as detecting and identifying pathogens during epidemics in remote areas, or when conditions are rapidly changing.

And one day it may indeed provide conclusive evidence for life beyond Earth.

"Several planetary bodies are thought to have habitable conditions, it's an exciting time for astrobiology," says Dr Goordial.

MARSDAILY
Earthworms can reproduce in Mars-like soil
Washington (UPI) Nov 27, 2017
A pair of newborn earthworms in a Dutch lab suggests earthworms can reproduce in Martian soil. Researchers at Wageningen University introduced earthworms to pots of Mars-like soil featuring arugula plants and organic matter. Early results suggest the earthworms were able to successfully reproduce. If humans are to establish permanent colonies on Mars, they'll need to grow their o ... read more

Related Links
Frontiers
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MARSDAILY
Possible Lava Tube Skylights Discovered Near the North Pole of the Moon

Russian company declassifies 1973 report on Lunokhod-2 lunar rover

Funding runs dry for Indian Google X Prize lunar team

Astronauts: Trump's proposed Lunar mission will take time

MARSDAILY
Scientist reveals what is so special about Chines's next moon mission

China's Kuaizhou-11 rocket scheduled to launch in first half of 2018

Nation 'leads world' in remote sensing technology

China plans for nuclear-powered interplanetary capacity by 2040

MARSDAILY
NASA, USGS confirm Michigan meteorite strike

Study identifies processes of rock formed by meteors or nuclear blasts

NASA's newly renamed Swift mission spies a comet slowdown

NASA image showcases Ceres mountain named for Kwanzaa

MARSDAILY
JUICE ground control gets green light to start development

New Year 2019 offers new horizons at MU69 flyby

Study explains why Jupiter's jet stream reverses course on a predictable schedule

New Horizons Corrects Its Course in the Kuiper Belt

MARSDAILY
Giant Storms Cause Palpitations in Saturn's Atmospheric Heartbeat

Electrical and Chemical Coupling Between Saturn and Its Ring

Unique atmospheric chemistry explains cold vortex on Saturn's moon Titan

Cassini Image Mosaic: A Farewell to Saturn

MARSDAILY
'First Light' images from CERES FM6 Earth-observing instrument

Himawari-8 data simulation allows 10-min updates of rain and flood predictions

Earth-i launches prototype of world's first full-colour, full-motion video satellite constellation

NASA's Magnetospheric Multiscale Mission surpasses expectations flying to new heights in 2017

MARSDAILY
ASU engineer showcases NASA research for Congress

NanoRacks Begins Third International Space Station External Platform Mission In Extreme Space Environment

Columbus: 10 years a lab

Top takeaways from Consumers Electronics Show

MARSDAILY
Hubble finds substellar objects in the Orion Nebula

NASA study shows disk patterns can self-generate

Ingredients for life revealed in meteorites that fell to Earth

Citizen scientists discover five-planet system









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.