New finds for Mars rover, seven years after landing by Staff Writers Pasadena CA (JPL) Aug 07, 2019
NASA's Curiosity rover has come a long way since touching down on Mars seven years ago. It has traveled a total of 13 miles (21 kilometers) and ascended 1,207 feet (368 meters) to its current location. Along the way, Curiosity discovered Mars had the conditions to support microbial life in the ancient past, among other things. And the rover is far from done, having just drilled its 22nd sample from the Martian surface. It has a few more years before its nuclear power system degrades enough to significantly limit operations. After that, careful budgeting of its power will allow the rover to keep studying the Red Planet. Curiosity is now halfway through a region scientists call the "clay-bearing unit" on the side of Mount Sharp, inside of Gale Crater. Billions of years ago, there were streams and lakes within the crater. Water altered the sediment deposited within the lakes, leaving behind lots of clay minerals in the region. That clay signal was first detected from space by NASA's Mars Reconnaissance Orbiter (MRO) a few years before Curiosity launched. "This area is one of the reasons we came to Gale Crater," said Kristen Bennett of the U.S. Geological Survey, one of the co-leads for Curiosity's clay-unit campaign. "We've been studying orbiter images of this area for 10 years, and we're finally able to take a look up close." Rock samples that the rover has drilled here have revealed the highest amounts of clay minerals found during the mission. But Curiosity has detected similarly high amounts of clay on other parts of Mount Sharp, including in areas where MRO didn't detect clay. That's led scientists to wonder what is causing the findings from orbit and the surface to differ. The science team is thinking through possible reasons as to why the clay minerals here stood out to MRO. The rover encountered a "parking lot full of gravel and pebbles" when it first entered the area, said the campaign's other co-lead, Valerie Fox of Caltech. One idea is that the pebbles are the key: Although the individual pebbles are too small for MRO to see, they may collectively appear to the orbiter as a single clay signal scattered across the area. Dust also settles more readily over flat rocks than it does over the pebbles; that same dust can obscure the signals seen from space. The pebbles were too small for Curiosity to drill into, so the science team is looking for other clues to solve this puzzle. Curiosity exited the pebble parking lot back in June and started to encounter more complex geologic features. It stopped to take a 360-degree panorama at an outcrop called "Teal Ridge." More recently, it took detailed images of "Strathdon," a rock made of dozens of sediment layers that have hardened into a brittle, wavy heap. Unlike the thin, flat layers associated with lake sediments Curiosity has studied, the wavy layers in these features suggest a more dynamic environment. Wind, flowing water or both could have shaped this area. Both Teal Ridge and Strathdon represent changes in the landscape. "We're seeing an evolution in the ancient lake environment recorded in these rocks," said Fox. "It wasn't just a static lake. It's helping us move from a simplistic view of Mars going from wet to dry. Instead of a linear process, the history of water was more complicated." Curiosity is discovering a richer, more complex story behind the water on Mount Sharp - a process Fox likened to finally being able to read the paragraphs in a book - a dense book, with pages torn out, but a fascinating tale to piece together.
Curiosity detects unusually high methane levels Pasadena CA (JPL) Jun 24, 2019 This week, NASA's Curiosity Mars rover found a surprising result: the largest amount of methane ever measured during the mission - about 21 parts per billion units by volume (ppbv). One ppbv means that if you take a volume of air on Mars, one billionth of the volume of air is methane. The finding came from the rover's Sample Analysis at Mars (SAM) tunable laser spectrometer. It's exciting because microbial life is an important source of methane on Earth, but methane can also be created through int ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |