Mars Exploration News  
MARSDAILY
New Gravity Map Suggests Mars Has a Porous Crust
by Elizabeth Zubritsky for GSFC News
Greenbelt MD (SPX) Sep 14, 2017


A new map of the thickness of Mars' crust shows less variation between thicker regions (red) and thinner regions (blue), compared to earlier mapping. This view is centered on Valles Marineris, with the Tharsis Montes near the terminator to its west. The map is based on modeling of the Red Planet's gravity field by scientists at NASA's Goddard Space Flight Center in Greenbelt, Maryland. The team found that globally Mars' crust is less dense, on average, than previously thought, which implies smaller variations in crustal thickness. Image courtesy NASA/Goddard/UMBC/MIT/E. Mazarico. For a larger version of this image please go here.

NASA scientists have found evidence that Mars' crust is not as dense as previously thought, a clue that could help researchers better understand the Red Planet's interior structure and evolution. A lower density likely means that at least part of Mars' crust is relatively porous. At this point, however, the team cannot rule out the possibility of a different mineral composition or perhaps a thinner crust.

"The crust is the end-result of everything that happened during a planet's history, so a lower density could have important implications about Mars' formation and evolution," said Sander Goossens of NASA's Goddard Space Flight Center in Greenbelt, Maryland. Goossens is the lead author of a Geophysical Research Letters paper describing the work.

The researchers mapped the density of the Martian crust, estimating the average density is 2,582 kilograms per meter cubed (about 161 pounds per cubic foot). That's comparable to the average density of the lunar crust. Typically, Mars' crust has been considered at least as dense as Earth's oceanic crust, which is about 2,900 kilograms per meter cubed (about 181 pounds per cubic foot).

The new value is derived from Mars' gravity field, a global model that can be extracted from satellite tracking data using sophisticated mathematical tools. The gravity field for Earth is extremely detailed, because the data sets have very high resolution. Recent studies of the Moon by NASA's Gravity Recovery and Interior Laboratory, or GRAIL, mission also yielded a precise gravity map.

The data sets for Mars don't have as much resolution, so it's more difficult to pin down the density of the crust from current gravity maps. As a result, previous estimates relied more heavily on studies of the composition of Mars' soil and rocks.

"As this story comes together, we're coming to the conclusion that it's not enough just to know the composition of the rocks," said Goddard planetary geologist Greg Neumann, a co-author on the paper. "We also need to know how the rocks have been reworked over time."

Goossens and colleagues started with the same data used for an existing gravity model but put a new twist on it by coming up with a different constraint and applying it to obtain the new solution.

A constraint compensates for the fact that even the best data sets can't capture every last detail. Instead of taking the standard approach, known to those in the field as the Kaula constraint, the team created a constraint that considers the accurate measurements of Mars' elevation changes, or topography.

"With this approach, we were able to squeeze out more information about the gravity field from the existing data sets," said Goddard geophysicist Terence Sabaka, the second author on the paper.

Before taking on Mars, the researchers tested their approach by applying it to the gravity field that was in use before the GRAIL mission. The resulting estimate for the density of the moon's crust essentially matched the GRAIL result of 2,550 kilograms per meter cubed (about 159 pounds per cubic foot).

From the new model, the team generated global maps of the crust's density and thickness. These maps show the kinds of variations the researchers expect, such as denser crust beneath Mars' giant volcanoes.

The researchers note that NASA's InSight mission - short for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport - is expected to provide the kinds of measurements that could confirm their finding. This Discovery Program mission, scheduled for launch in 2018, will place a geophysical lander on Mars to study its deep interior.

MARSDAILY
Citizen scientists spot Martian 'spiders' in unexpected places
Washington (UPI) Aug 30, 2017
Bowie wasn't lying about Ziggy's bandmates - there are spiders from Mars. Sort of. These 'spiders' aren't eight-legged arachnids. They're unique geologic formations. And it turns out, the spider web-like networks of cracks on Mars surface are more ubiquitous than scientists thought. A group of citizen scientists have identified several spiders on Mars in regions where researcher ... read more

Related Links
NASA's Planetary Geodynamics Laboratory
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MARSDAILY
Researchers create first global map of water in moon's soil

Call For Ideas For Research On The Deep Space Gateway

Analysis of a 'rusty' lunar rock suggests the moon's interior is dry

Roscosmos Approves Luna-25 Space Station Model in Moon Exploration Project

MARSDAILY
Spacecraft passes docking test

China, Russia to Have Smooth Space Cooperation, Says Expert

Kuaizhou-11 to send six satellites into space

Russia, China May Sign 5-Year Agreement on Joint Space Exploration

MARSDAILY
NASA-funded research at USC provides evidence of ground-ice on asteroids

Radar Reveals Two Moons Orbiting Asteroid Florence

Sling-shot show for NASA spacecraft over Australia

NASA's Asteroid-Bound Spacecraft to Slingshot Past Earth

MARSDAILY
Hibernation Over, New Horizons Continues Kuiper Belt Cruise

Pluto features given first official names

Jupiter's Auroras Present a Powerful Mystery

New Horizons Files Flight Plan for 2019 Flyby

MARSDAILY
Cassini Makes its 'Goodbye Kiss' Flyby of Titan

Cassini Spacecraft Demise Is Bittersweet for PSI's Hansen

Cassini readies final plunge into Saturn

CU Boulder Scientists Ready for Cassini Mission to Saturn Grand Finale

MARSDAILY
Team gathers unprecedented data on atmosphere's organic chemistry

Who is the chief culprit of dust concentrations over East Asia?

Boeing to Design and Build Seven Medium Earth Orbit Satellites for SES

Airbus to reshape Earth observation market with its Pleiades Neo constellation

MARSDAILY
Diet tracker in space

Three astronauts blast off for five-month ISS mission

Crewed Missions Beyond LEO

Voyager Spacecraft: 40 Years of Solar System Discoveries

MARSDAILY
Hubble observes pitch black planet

The return of the comet-like exoplanet

Does the Organic Material of Comets Predate our Solar System?

X-rays Reveal Temperament of Possible Planet-hosting Stars









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.