Mars Exploration News  
MARSDAILY
NASA's Mars 2020 will hunt for microscopic fossils
by Staff Writers
Pasadena CA (JPL) Nov 13, 2019

illustration only

Scientists with NASA's Mars 2020 rover have discovered what may be one of the best places to look for signs of ancient life in Jezero Crater, where the rover will land on Feb. 18, 2021.

A paper published in the journal Icarus identifies distinct deposits of minerals called carbonates along the inner rim of Jezero, the site of a lake more than 3.5 billion years ago. On Earth, carbonates help form structures that are hardy enough to survive in fossil form for billions of years, including seashells, coral and some stromatolites - rocks formed on this planet by ancient microbial life along ancient shorelines, where sunlight and water were plentiful.

The possibility of stromatolite-like structures existing on Mars is why the concentration of carbonates tracing Jezero's shoreline like a bathtub ring makes the area a prime scientific hunting ground.

Mars 2020 is NASA's next-generation mission with a focus on astrobiology, or the study of life throughout the universe. Equipped with a new suite of scientific instruments, it aims to build on the discoveries of NASA's Curiosity, which found that parts of Mars could have supported microbial life billions of years ago. Mars 2020 will search for actual signs of past microbial life, taking rock core samples that will be deposited in metal tubes on the Martian surface. Future missions could return these samples to Earth for deeper study.

In addition to preserving signs of ancient life, carbonates can teach us more about how Mars transitioned from having liquid water and a thicker atmosphere to being the freezing desert it is today. Carbonate minerals formed from interactions between carbon dioxide and water, recording subtle changes in these interactions over time. In that sense, they act as time capsules that scientists can study to learn when - and how - the Red Planet began drying out.

Measuring 28 miles (45 kilometers) wide, Jezero Crater was also once home to an ancient river delta. The "arms" of this delta can be seen reaching across the crater floor in images taken from space by satellite missions like NASA's Mars Reconnaissance Orbiter. The orbiter's Compact Reconnaissance Imaging Spectrometer for Mars instrument, or CRISM, helped produce colorful mineral maps of the "bathtub ring" detailed in the new paper.

"CRISM spotted carbonates here years ago, but we only recently noticed how concentrated they are right where a lakeshore would be," said the paper's lead author, Briony Horgan of Purdue University in West Lafayette, Indiana. "We're going to encounter carbonate deposits in many locations throughout the mission, but the bathtub ring will be one of the most exciting places to visit."

It isn't guaranteed that the shoreline carbonates were formed in the lake; they could have been deposited before the lake was present. But their identification makes the site's western rim, called "the marginal carbonate-bearing region," one of the richest troves of these minerals anywhere in the crater.

The Mars 2020 team expects to explore both the crater floor and delta during the rover's two-year prime mission. Horgan said the team hopes to reach the crater's rim and its carbonates near the end of that period.

"The possibility that the 'marginal carbonates' formed in the lake environment was one of the most exciting features that led us to our Jezero landing site. Carbonate chemistry on an ancient lakeshore is a fantastic recipe for preserving records of ancient life and climate," said Mars 2020 Deputy Project Scientist Ken Williford of NASA's Jet Propulsion Laboratory in Pasadena, California. JPL leads the 2020 mission. "We're eager to get to the surface and discover how these carbonates formed."

Jezero's former lake shoreline isn't the only place scientists are excited to visit. A new study in Geophysical Research Letters points to a rich deposit of hydrated silica on the edge of the ancient river delta. Like carbonates, this mineral excels at preserving signs of ancient life. If this location proves to be the bottom layer of the delta, it will be an especially good place to look for buried microbial fossils.

The Mars 2020 rover will launch in July or August 2020 from Cape Canaveral, Florida. The Mars 2020 Project at JPL manages rover development for the Science Mission Directorate at NASA Headquarters in Washington. NASA's Launch Services Program, based at the agency's Kennedy Space Center in Florida, is responsible for launch management.


Related Links
Mars 2020
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MARSDAILY
3D models of Mars to aid ESA Rover in quest for ancient life
Geneva, Switzerland (SPX) Sep 17, 2019
Scientists at TU Dortmund University have generated high-accuracy 3D models of terrain within the landing ellipse of the ESA/Roscosmos ExoMars rover, Rosalind Franklin. The Digital Terrain Models (DTMs) have a resolution of about 25 cm per pixel and will help scientists to understand the geography and geological characteristics of the region and to plan the path of the rover around the site. To increase the accuracy of the models, the team has developed an innovative technique that integrates atmo ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MARSDAILY
NASA gains broad international support for Artemis Program at IAC

Lunar IceCube mission to locate, study resources needed for sustained presence on Moon

NASA's coating technology could help resolve lunar dust challenge

Boeing proposes 'Fewest Steps to the Moon' concept for NASA lunar return

MARSDAILY
Beijing eyes creating first Earth-Moon economic zone

China conducts simulated weightlessness experiment for long-term stay in space

China plans more space science satellites

China's absence from global space conference due to "visa problem" causes concern

MARSDAILY
China to meet challenges of exploring asteroid, comet

Apollo astronaut champions Hera for planetary defence

Asteroid Hygiea could be the smallest dwarf planet yet

Did an extraterrestrial impact trigger the extinction of ice-age animals?

MARSDAILY
Juice cast in gold

SwRI to plan Pluto orbiter mission

NASA's Juno prepares to jump Jupiter's shadow

Huge Volcano on Jupiter's Moon Io Erupts on Regular Schedule

MARSDAILY
Numerous polar storms on Saturn analyzed by the UPV/EHU's Planetary Sciences Group

University of Hawaii team unravels origin, chemical makeup of Titan's dunes

Saturn most moon-rich planet in solar system after discovery of 20 new moons

Saturn surpasses Jupiter after the discovery of 20 new moons

MARSDAILY
Ozone hole set to close

Changes in high-altitude winds over the South Pacific produce long-term effects

Combining satellites, radar provides path for better forecasts

China confirms reception of data from Gaofen-7 satellite

MARSDAILY
Stand-up scientists use comedy to reach beyond the ivory tower

Are we set to taste space wine

Cygnus NG-12 cargo vehicle looking good on arrival

Paragon wins $2M contract under NASA Tipping Point Program

MARSDAILY
Life on Venus and the interplanetary transfer of biota from Earth

NASA instrument to probe planet clouds on European mission

Study refines which exoplanets are potentially habitable

The most spectacular celestial vision you'll never see









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.